USB Type-C: A New Frontier for Power and Data Transmission

August 9, 2017 David Haboud


USB Type C graphic

 

When it comes to PCB design, imbalanced power demands in your board can knock the wind right out of your sails. Power discrepancies can quickly turn the tide of your design process and can be extremely difficult to amend without having to do considerable rework. So what’s the solution for getting your voltage levels just right, and is it possible to increase the transmission of data while reducing your power consumption? To start, you’d need a means to accommodate varying voltage requirements in a single device; one that is capable of processing multiple functions without “running hot.” While this may seem too good to be true, it’s quite possible with a more utilitarian approach to connectivity.

 

The Standard Approach to Transmitting Data

 

In systems that are more sophisticated, data transmission via wireless technology is often the preferred method for transmitting information. Such is the case for cellular devices. Although efficient, wireless technology can quickly deplete the power supply of a given device, as most cell phone users are familiar with.

 

Wireless technology like cell phones also require an accompanying power source. If you own a cell phone today, your power source will most likely come in the form of a USB cable and adapter. Conventional USB cables typically come in two forms: USB Type-A and USB Type-B. Both types have distinct characteristics that distinguish one from the other. Here are a few:

 

USB Type-A

  • Flat, rectangular end

  • Type-A host and peripherals do not require the same USB version to function together

  • The compatibility of the port along different versions attributes to its stability and longevity

 

USB Type-B

  • The common connector seen for peripherals

  • The micro-B USB is the de facto connector utilized in modern mobile technology such as phones, cameras, and tablets

  • Unlike Type-A varieties, the USB Type-B variations differ greatly in shape and appearance

 

ABCs of USBs

USBs vary across devices

 

While these mainstream connectors have fulfilled the basic needs of power distribution and data transmission for several years, they fall short of being a universal solution that harnesses all that our devices are capable of.

 

A Multipurpose Power Solution: USB Type-C

 

The introduction of USB connectivity in many of our contemporary devices not only allows us to conveniently charge them almost anywhere, but also makes connecting to other forms of technology simple. We want the ability to take our devices with us wherever we go, and we want that same technology to be versatile. Enter USB Type-C, a relatively new addition to the USB lineup. So what sets USB Type-C apart from its predecessors?

 

USB C compared to USB A and USB B

 

USB Type-C might be considered a “superior” technology to its respective siblings for several reasons. Over the decades USB Type-A, B, and other proprietary cables have facilitated data transmission for various electronics, but have lacked versatility when it comes to power delivery and display outputs. USB Type-C has filled this void by consolidating these functionalities into one single connector. Because USB Type-C is capable of processing many different functions, it also provides a more substantial amount of power, compared to types A and B.

 

How Will USB Type-C Influence Our Approach to Electronic Design?

 

As USB Type-C continues to pick up steam where new age devices are concerned, electronic companies will begin to endorse this more advanced, multifaceted form of connectivity. Consumers will begin to look at USB Type-C connectors as the standard option for not only powering their devices, but connecting them to various other electronics, and more. USB Type-C connectors will leverage a significantly wider spectrum of compatibility, convenience, and connectivity that remains largely untapped, presenting an opportunity to further advance the Internet of Things (IoT). Soon, the possibilities will be limitless with connecting multiple devices, transmitting power, and displaying various types of media through one solitary medium. Just think of USB Type-C as the Swiss Army knife of USB connectors, and how leveraging this more efficient technology can help you achieve your design goals.

 

Download our free white paper to learn more about USB Type-C connectivity for electronic designs.

About the Author

David Haboud

David Haboud is a Technical Marketing Engineer at Altium. He studied electrical engineering with an emphasis in computer architecture and hardware/software design at the University of Southern California. David began his career as an embedded software engineer in the aerospace industry and has always strived to make it easier for hardware and software engineers to communicate. During his tenure as an embedded software engineer, he focused on firmware development and data acquisition for auxiliary power units. In his spare time, David hosts and performs in improvisational and stand-up comedy nights in San Diego, California.

More Content by David Haboud
Previous Article
Internet of Things Hardware Platforms Are Becoming Flexible
Internet of Things Hardware Platforms Are Becoming Flexible

There’s a huge market out there for flexible IoT hardware platforms. Learn from those already in the space,...

Next Article
Why It Is Best to Separate Your General Purpose Controller into Two PCBs
Why It Is Best to Separate Your General Purpose Controller into Two PCBs

The manufacturing costs might be higher, but a modular general purpose controller is a better long-term PCB...