Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions

    World-Renowned Technology for Embedded Systems Development

  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience


    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    EMI from Heatsinks and What You Can Do About It

    Zachariah Peterson
    |  December 10, 2019

    EMI from heatsink in a PCB

    Selecting the right heatsink can help you keep your system cool and prevent EMI.

    While it may not be obvious, or while most designers may not think to check, heatsinks can generate EMI when they are connected to a switching element. This is a common problem in power supply design, and whenever a heatsink is placed in contact with a component that switches with high current draw at high frequency. Reducing EMI from heatsinks requires balancing the conducted and radiated portions, and there are some simple design steps you can take to do this.

    EMI from Heatsinks and Parasitic Capacitance

    When most designers consider choosing a heatsink for components on their board, it is likely they simply go with the manufacturer’s recommendations. They may use a heatsink with similar size as that recommended by the manufacturer, but made from a material with higher thermal conductivity. In some cases, designers might opt for active cooling measures, like a cooling fan, or (in extreme cases) liquid or evaporative cooling. All these courses of action are appropriate when using a standardized component, especially when the manufacturer provides the required heatsink and assembly guidelines.

    Ever since CPU speeds reached 1 GHz and beyond, radiated and conducted EMI from heatsinks started to become more noticable, although this likely went unnoticed by many designers outside the power electronics and computer systems industries. Today, it is generally taken as gospel that the heatsink should simply be grounded, and that this will solve the problem of EMI. In reality, this does not completely eliminate the problem, and solving the problem requires managing parasitic capacitance.

    Both flavors of EMI arise due to parasitic capacitive coupling between a switching IC and the nearby heatsink. If you examine the structure of an integrated circuit with switching transistors, one can immediately see how the chip packaging and any thermal paste or interface material forms the insulating region in a capacitor. This parasitic capacitance is responsible for inducing a common-mode current in the heatsink.

    EMI from heatsinks on a MOSFET

    Example with a vertical heatsink bonded to a MOSFET.

    What happens next depends on whether or not the heatsink is grounded. If the heatsink is left ungrounded, then the heatsink and chip act like a source of radiated EMI, as there is no easy path back to ground for any capacitively coupled current. The current will excite multiple electromagnetic resonances in the heatsink, creating a set of regions in the heat sink with high current and strong radiation. This is one reason a heatsink is usually grounded by default. However, a strong current that is induced in the heatsink and diverted to ground can create a source of conducted EMI in nearby circuits, depending on the ground return path.

    Why isn’t radiated or conducted EMI from heatsinks addressed more often? There are a number of reasons. Typically, EMI from a heatsinks becomes appreciable in two cases:

    • High current draw when switching. This is one issue in power electronics, wherein a bulky transistor switches in a large switching regulator. Switching to a higher voltage in a shorter time period generates a larger displacement current in the heatsink.

    • Fast switching in a processor. Processors that run faster can easily generate a large displacement current in the heatsink. They can also easily excite high frequency resonances in the heatsink.

    In both cases, the capacitive coupling to the heatsink needs to be considered when designing a high voltage/current switching power supply. Other applications include VRMs for GPUs and CPUs, especially in devices that run at low voltage.

    Balancing Conducted and Radiated EMI from Heatsinks

    The usual solution is to simply ground the heat sink. This reduces the problem of radiated EMI by returning common-mode displacement current back to the reference plane. This requires using a heat sink with a conductive finish. If the heatsink is left floating, it will act like a large dipole antenna and can radiate strongly when a resonance is excited. As a switching digital component or MOSFET in a power supply has a broad signal spectrum, multiple resonances can be excited in a floating heatsink, producing a complicated radiation pattern.

    One option to reduce radiated EMI from heatsinks is to simply use a smaller grounded heatsink. This can then be complemented with a small fan. However, using a fan brings about its own EMI issues, depending on where and how the fan is mounted. Another option is to use a grounded thermal washer between the heatsink and the component. The thermal washer is then bonded to the component and the heatsink with thermal paste on both sides. This effectively creates two capacitors in parallel, which reduces the total stray capacitance. Some commercially available heatsinks will contain this type a built-in thermal washer.

    Heatsink on a black PCB

    This odd-shaped heatsink has a unique resonance structure and can radiate at a variety of frequencies, especially when it receives a displacement current from a switching digital signal.

    The thermal paste or TIM you use will play a role in determining stray capacitance. You should ideally use a TIM or paste with lower dielectric constant as this will further reduce the stray capacitance, no matter which method you use to reduce EMI.

    The schematic design and PCB layout tools in Altium Designer® are ideal for defining a ground scheme for your heatsink in order to prevent EMI. You can then define grounding points or mounting holes in your layout, and you can include your heatsink as a mechanical object in your BOM automatically. You can also simulate various aspects of signal behavior with the post-layout simulation tools in Altium Designer.

    Now you can download a free trial of Altium Designer and learn more about the industry’s best layout, simulation, and production planning tools. Talk to an Altium expert today to learn more.

    About Author

    About Author

    Zachariah Peterson has an extensive technical background in academia and industry. Prior to working in the PCB industry, he taught at Portland State University. He conducted his Physics M.S. research on chemisorptive gas sensors and his Applied Physics Ph.D. research on random laser theory and stability.His background in scientific research spans topics in nanoparticle lasers, electronic and optoelectronic semiconductor devices, environmental systems, and financial analytics. His work has been published in several peer-reviewed journals and conference proceedings, and he has written hundreds of technical blogs on PCB design for a number of companies. Zachariah works with other companies in the PCB industry providing design and research services. He is a member of IEEE Photonics Society and the American Physical Society.

    most recent articles

    Back to Home