Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • A365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Raise the Volume: How To Design A Signal Amplification Device

    February 9, 2018

    Transistor on a white and blue background

    When you’re used waking up to your baby’s loud cries in the middle of the night, you can sleep through any alarm clock. After a few months of babysitting, you stop hearing any alarm that isn’t amplified by a loudspeaker.

    Even in electronics, signals sometimes need to be amplified before being processed by microcontrollers. For example, audio signals and inputs from certain microsensors might require amplification before they can be processed by analog-to-digital converters (ADC). This is because the full range of a microsensor could be in millivolts, which may be a smaller resolution than the ADC can handle.

    As you’re perfecting your design, don’t forget to take signal amplification into account. As building a signal amplification device requires a thorough consideration of your entire design, follow these tips to optimize your design from the get-go:

    First Signal Amplification Steps: Get Your Sensors Right

    Before starting your design, be sure to select the right sensor. Due to the wide variety of sensors in the market, it’s easy to get confused. Regardless of the parameters, you are measuring, precision is typically a non-negotiable criterion when selecting a sensor for your signal amplification device.

    Get a sensor that is capable of measuring within the required limits and is sensitive enough to detect the slightest of changes, as required by the design specification. After identifying the right sensor for your design, check the output signals and determine how much it should be amplified before being processed by the ADC.

    Ensure Noise Immunity

    Compared to the operating voltage of the ADC and processing controller, an unamplified raw signal from a sensor can have a relatively low amplitude. The slightest fluctuation in the voltage of the raw signal, however, can result in a huge deviation of the measured value. This is why it is important for the analog signal track to be protected from electrical interference.

    The best practices for routing sensitive analog signals must be followed here. The analog track carrying the raw sensor signal should be well-routed and kept as short as possible. High frequency and power tracks must be kept away from the analog signal and a separate ground plane for the analog circuitry should be established.

    Man trying to block out noise with pillow around his head

    It’s important for raw analog signal to be unaffected by noise.

    Follow Amplification Circuitry Design Best Practices

    Before the signal is processed by the ADC, it has to be amplified by a certain magnitude. This is where an operational amplifier (op-amp) is normally used. An op-amp connected with a couple of resistors can boost the signal as desired. Besides determining the magnitude of the gain, it is also important to ensure that the gain value is stable.

    In applications that involve small signals or high-frequency signals, impedance matching is performed to ensure that the maximum power from the sensor is transferred to the input of the operational amplifier. You’ll also need to ensure that the range of the amplified signal stays within the output swing of the operational amplifier.

    Prepare for Analog-to-Digital Conversion

    In data processing, analog signals need to be converted to digital and this is where an ADC comes in. You’ll have the choice of using a built-in ADC within the microcontroller or a dedicated ADC chip. The primary advantage of sticking with an on-chip ADC is allowing the microcontroller to read the values from the register instead of reading from an external ADC with a protocol.

    ADCs typically have a decent 24-bit resolution and come with automatic sampling to provide more stable readings. You’ll also need to ensure the ADC has adequate bandwidth for sampling the analog signal. This can be determined by the Nyquist Theorem which states that the sampling frequency must be at least twice the frequency of the input signal.

    iPhone with corded landline attached to headphone jack.

    An ADC is required to turn analog signals into a digital value.

    Understand Signal Processing Principles

    Depending on the purpose of your signal amplification device, the amplified signal may be represented by visual display, retrieved by software, or simply converted to an analog output. In devices like environmental sensing controllers for aquaculture, the amplified signal is constantly measured to a threshold value with an ensuing action triggered if the threshold is crossed.

    Integrating a signal amplification device requires a meticulous design approach that can be challenging to approach without the right design software. You can simplify the design process with Altium’s  CircuitStudio®, which includes access to your complete design history and step-by-step adherence to intelligent Design Rule Checking to ensure the best practices of analog design.

    Still hesitant about optimizing signal amplification on your PCB? Talk to an expert at Altium.

    most recent articles

    Back to Home