Altıum .

ALTIUMLIVE 2018: PCB DESIGN BEST PRACTICES: ADVANCED STACK-UP IN ALTIUM DESIGNER

Carl Schattke, CID+ OEM Automotive, Lead PCB Designer

Julie Ellis TTM Technologies, Field Applications Engineer

Andrew Mitchell Altium, Senior Applications Engineer San Diego October 3rd-5th,2018

PCB Layer Stack-Up Agenda

Introduction – Why learn about PCB Stack-Ups?

PCB Layer Stack-Up Physics

Communicating About Stack-Ups and What Do You

Tools and Processes

Altium Designer 19 Implementation Examples

https://melbournechapter.net/images/art-easel-clipart-2.png

Altium 。

Layer	Name	Material	Thickness	Constant	Board Layer Stack
1	Top Overlay				
2	Top Solder	Solder Resist	0.010mm	3.5	
3	L01_Top_Layer	Copper	0.025mm		
4	Dielectric_1	EM-827B 1080(68)	0.067mm	3.7	
5	L02_Signal_Layer_1	Copper	0.025mm		
6	Dielectric_2	EM-827B 1080(68)	0.072mm	3.7	
7	L03_Signal_Layer_2	Copper	0.025mm		
8	Dielectric 3	EM-827B 1080(68)	0.082mm	3.7	
9	L04_Signal_Layer_3	Copper	0.025mm		
10	Dielectric 4	EM-827B 2116X1(68)	0.128mm	3.8	
11	L05_Signal_Layer_4	Copper	0.012mm		
12	Dielectric 5	EM827 1080X1	0.076mm	3.8	
13	L06_Internal_Plane_2	Copper	0.012mm		
14	Dielectric 6	EM-827B 2116X1(68)	0.129mm	4.2	
15	L07_Internal_Plane_3	Copper	0.025mm		
16	Dielectric 7	EM827 2116X1	0.127mm	4.1	
17	L08_Internal_Plane_4	Copper	0.025mm		
18	Dielectric 8	EM-827B 2116X1(68)	0.129mm	4.2	
19	L09_Internal_Plane_5	Copper	0.012mm		
20	Dielectric 9	EM827 1080X1	0.076mm	3.8	
21	L10_Signal_Layer_5	Copper	0.012mm		
22	Dielectric 10	EM-827B 2116X1(68)	0.128mm	3.8	
23	L11_Signal_Layer_6	Copper	0.025mm		
24	Dielectric 14	EM-827B 1080(68)	0.081mm	3.7	
25	L12_Signal_Layer_7	Copper	0.025mm		
26	Dielectric 12	EM-827B 1080(68)	0.072mm	3.7	E
27	L13_Signal_Layer_8	Copper	0.025mm		
28	Dielectric 13	EM-827B 1080(68)	0.067mm	3.7	
29	L14_Bottom_Layer	Copper	0.025mm		
30	Bottom Solder	Solder Resist	0.010mm	3.5	
31	Bottom Overlay				

	Layer Name	Туре	Material	Thickness (mm)	Dielectric Material	Dielectric Constant	Pullback (mm)	Orientation	Coverlay Expansion
	Top Overlay	Overlay							
	Top Solder	Solder Mask/Co	Surface Material	0.02032	Solder Resist	3.5			0
	Top Layer(1)	Signal	Copper	0.04826				Тор	
	Dielectric 1	Dielectric	Core	0.254	2x 2313 - 57%	4.2			
	MidLayer(2)	Signal	Copper	0.03048				Not Allowed	
	Dielectric 2	Dielectric	Prepreg	0.127	FR-4	4.2			
	MidLayer(3)	Signal	Copper	0.03048				Not Allowed	
	Dielectric 3	Dielectric	Core	0.254	2x 2313 - 57%	4.2			
7 1 1	MidLayer(4)	Signal	Copper	0.03048				Not Allowed	
MidL Diele	Dielectric 4	Dielectric	Prepreg	0.127	FR-4	4.2			
	MidLayer(5)	Signal	Copper	0.03048				Not Allowed	
	Dielectric 5	Dielectric	Core	0.254	2x 2313 - 57%	4.2			
	MidLayer(6)	Signal	Copper	0.03048				Not Allowed	
	Dielectric 6	Dielectric	Prepreg	0.127	FR-4	4.2			
	MidLayer(7)	Signal	Copper	0.03048				Not Allowed	
	Dielectric 7	Dielectric	Core	0.254	2x 2313 - 57%	4.2			
	Bottom Layer(8)	Signal	Copper	0.04826				Bottom	
	Bottom Solder	Solder Mask/Co	Surface Material	0.02032	Solder Resist	3.5			0
	Bottom Overlay	Overlay							

4

Altium _®

Туре	Material	Thickness (mm)	Dielectric Material	Dielectric Constant	Pullback (mm)	Orientation	Coverlay Expansion
Overlay							
Solder Mask/Co	Surface Material	0.02032	Solder Resist	3.5			0
Signal	Copper	0.04826				Тор	
Dielectric	Core	0.254	2x 2313 - 57%	4.2			
Signal	Copper	0.03048				Not Allowed	
Dielectric	Prepreg	0.127	FR-4	4.2			
Signal	Copper	0.03048				Not Allowed	
Dielectric	Core	0.254	2x 2313 - 57%	4.2			
Signal	Copper	0.03048				Not Allowed	
Dielectric	Prepreg	0.127	FR-4	4.2			
Signal	Copper	0.03048				Not Allowed	
Dielectric	Core	0.254	2x 2313 - 57%	4.2			
Signal	Copper	0.03048				Not Allowed	
Dielectric	Prepreg	0.127	FR-4	4.2			
Signal	Copper	0.03048				Not Allowed	
Dielectric	Core	0.254	2x 2313 - 57%	4.2			
Signal	Copper	0.04826				Bottom	
Solder Mask/Co	Surface Material	0.02032	Solder Resist	3.5			0
Overlay							
	TypeOverlaySolder Mask/CoSignalDielectricSignalDielectricSignalDielectricSignalDielectricSignalDielectricSignalDielectricSignalDielectricSignalDielectricSignalDielectricSignalDielectricSignalDielectricSignalDielectricSignalOverlay	TypeMaterialOverlaySulface MaterialSolder Mask/CoSurface MaterialSignalCopperDielectricCoreSignalCopperDielectricPrepregSignalCopperDielectricCoreSignalCopperDielectricCoreSignalCopperDielectricPrepregSignalCopperDielectricPrepregSignalCopperDielectricCoreSignalCopperDielectricCopperSignalCopperDielectricCopperSignalCopperSignalCopperSignalCopperSignalCopperSignalCopperSignalSolder Mask/CoSurface MaterialOverlay	TypeMaterialThickness (mm)OverlaySolder Mask/CoSurface Material0.02032SignalCopper0.04826DielectricCore0.254SignalCopper0.03048DielectricPrepreg0.127SignalCopper0.03048DielectricCore0.254SignalCopper0.03048DielectricCore0.254SignalCopper0.03048DielectricPrepreg0.127SignalCopper0.03048DielectricCore0.254SignalCopper0.03048DielectricCopper0.03048DielectricCopper0.127SignalCopper0.03048DielectricPrepreg0.127SignalCopper0.03048DielectricCopper0.03048DielectricSopper0.03048DielectricSopper0.03048DielectricSopper0.03048DielectricCopper0.03048DielectricSopper0.03048DielectricCopper0.03048DielectricSopper0.03048DielectricSopper0.02032Solder Mask/CoSurface Material0.02032OverlayIII	TypeMaterialThickness (mm)Dielectric MaterialOverlay </td <td>TypeMaterialThickness (mm)Dielectric MaterialDielectric ConstantOverlay<!--</td--><td>TypeMaterialThickness (mm)Dielectric MaterialDielectric ConstantPullback (mm)Overlay<!--</td--><td>TypeMaterialThickness (mm)Dielectric MaterialDielectric ConstantPullback (mm)OrientationOverlay<</td></td></td>	TypeMaterialThickness (mm)Dielectric MaterialDielectric ConstantOverlay </td <td>TypeMaterialThickness (mm)Dielectric MaterialDielectric ConstantPullback (mm)Overlay<!--</td--><td>TypeMaterialThickness (mm)Dielectric MaterialDielectric ConstantPullback (mm)OrientationOverlay<</td></td>	TypeMaterialThickness (mm)Dielectric MaterialDielectric ConstantPullback (mm)Overlay </td <td>TypeMaterialThickness (mm)Dielectric MaterialDielectric ConstantPullback (mm)OrientationOverlay<</td>	TypeMaterialThickness (mm)Dielectric MaterialDielectric ConstantPullback (mm)OrientationOverlay<

PCB Layer Stack Up Mind Map

Altium。

PCB Layer Stack Up Agenda:

Introduction -Why learn about PCB Stack Ups?

PCB Layer Stackup Physics

Communicating about stack ups and what do you ask?

- Tools and processes
- Implementation Examples

Altium 。

Why do we want to get PCB Layer Stackup right?

- Can save time
- Can save us BIG money
- Can save aggravation
- Can save us from massive rework
- Can save us or accelerate design cycles
- Can help us save face in our organization
- Can save us from a faulty process

We are going to explore this at the board physics level, the people level and the tools and process level.

What's important to learn about Printed Circuit Board Layer Stack-ups?

- Stack up impacts design options
- Stack up impacts design time
- Stack up controls costs
- Stack up can mitigate Signal Integrity issues
- Stack up impacts production lead time

Stack up impacts design options

- More layers allow for more signals
- More layers allows for higher current capacity
- More Dielectric layers can improve voltage isolation
- More layers allows for denser fine pitch and BGA parts
- Proper layer stackup provides an excellent return path.
- Stack up control, controls Signal Integrity
- Stack up impacts production lead time

Some PCB Layer Stackup horror stories

- The Impossible stack
- The Rework
- The Money Burner
- The Potato Chip

The Impossible Stack-up

Altum

				Layer Stack										FPGA	RF	RF	Thermal	Crit & bus	DC power	mode supp	mode supp	mode supp		RF		RF	Tool
	Layer No	Layer	Layer	Material / Part Number	Weight	Materia	I Thicknes	ss (mil)	Finished	Thickne	ess (mil)	Cavity/Pocket Geo	metries	11-12	L1-L4	12-14	Là foi L4	UH.7	L1-L10	111-113	L14-L16	L17-L19		L1-L19		L11-L19	Tooling Holes
			-11-		(ex.)	nom.	min.	max.	nom.	min	mas.			6 mil	10.0 mli	10.0 mil	10.0 mll	08.0 ml	12.0 mil	10.0 mil	10.0 mll	06.0 mil		22 ml		22 ml	200
	1	RF1 Ground/FPGA Mount	Metal	C110 Copper, Rolled	1.5	2.07	2.07	2.07	3.87	3.97	3.87			1									Beck	Bark			
			Substrate	CLTE-XT Core	-	10.00	9.00	11.00	10.00	9.00	11.00	Cavity		١П									and	011			
- 9			Bond Ply	2020 Bond Ply 2 mil (X1)	-	2.00	1.90	2.10	2.00	1.00	2.10			1 / 1	$\top \square$								10	81			
200	2	RF1 Signal MMC Control	Metal	C110 Copper, Rolled	0.5	0.69	0.69	0.69	0.69	0.69	0.69			11													
888			Substrate	CLTE Core		3.00	2.90	3.10	3.00	2.90	3.10	Pocket		-													
			Bood Plv	2020 Bood Ply 2 mil (X1)		2.00	100	2.10	2.00	1 00	2.10				- 8 -	_		\vdash									
e e 3	2	Ged/Therm1	Metal	C110 Concer, Balled	10	1.39	1.39	1.39	1.39	1.20	1.38					8											
		Child Hotel	C. hokein	ALTE VT Associat	1.6	8.00	4.65	8.45	8.00	4.55	8.45						7										
		OEt Count	Bistel	COLE-XI Core(s)	15	2.00	9.00	0.10	3.00	9.00	3.10						8	-									
	7	Heri Ground	Devi Div	2000 Devel Div 2	1.0	2.07	2.07	2.07	2.07	2 DV	2.07		- L L		0												
F	6	00.010	bond Fly	2363 Bohd Hy 3 mi (72)		0.00	0.00	0.00	6.00	5.70	0.30			_	_				7								
	0	DCGND	Metal	C110 Copper, Rolled	0.5	0.09	0.69	0.69	1.29	1.29	1.28								1								
75		5.6161 m	Substrate	CLIE-AI Core	•	5.00	490	5.10	5.00	4.00	5.10			_													
- 2	6	DOCNIL	Metal	C110 Copper, Holed	0.5	0.09	0.69	0.69	0.69	0.89	0.69																
8	_		Bond Ply	2929 Bond Ply 2 mil (X1); 3 mil (X1)	•	5.00	4.90	5.10	5.00	4.90	5.10													1			
	7	DC/CNITL	Metal	C110 Copper, Rolled	1.0	1.38	1.38	1.38	1.38	1.38	1.38													8			
8			Substrate	CLTE-AT Core	•	5.00	4.90	5.10	5.00	4.90	5.10																
a a	8	DC Power Plane	Metal	C110 Copper, Rolled	1.0	1.38	1.38	1.38	1.38	1.38	1.38																
ö			Bond Ply	2929 Bond Ply 2 mil (X1); 3 mil (X1)	-	5.00	4.90	5.10	5.00	4.90	5.10												2				
a a	۵	DC Power Plane	Motal	C110 Copper, Rolled	1.0	1.38	1.38	1.38	1.38	1.38	1.38												8				
			Substrate	CLTE-AT Core	-	5.00	4.90	5.10	5.00	4.90	5.10																
	10	DC/ GND	Motal	C11D Copper, Rolled	1.0	1.38	1.38	1.38	1.98	1.98	1.98														-		1
			Bond Ply	2929 Bond Ply 3 mil (X2)	-	8.00	5.70	8.30	6.00	5.70	8.30									_					8		8
0	11	RF2 Ground	Motal	C110 Copper, Rolled	1.5	2.07	2.07	2.07	2.67	2.67	2.67																
NNZ			Substrate	CLTE-XT Core	-	10.00	9.00	11.00	10.00	9.00	11.00																
888	12	RF2 Signal - resistors	Metal	C110 Copper, Rolled; Resistors	0.5	0.09	0.60	0.60	0.60	0.69	0.60									7							
000			Bond Ply	2929 Bond Ply 2 mil (X1)	-	2.00	1.90	2.10	2.00	1.90	2,10									9							
눈뉻곷		Substrate	CLTE-XT Core		10.00	9.00	11.00	10.00	9.00	11.00															D-II		
	13	RF2 Ground	Metal	C110 Copper, Rolled	1.0	1.38	138	1.38	2.58	2.58	2.58															and	
			Bond Ply	2929 Bond Ply 3 mil (22)		0.00	5.70	0.30	0.00	5.70	0.30																
0	14	BE3 Ground	Metal	C110 Copper, Balled	10	1.38	138	1.38	2.58	2.58	2.58			r I													
2 . Z		100 010010	Substrate	CLTE-XT Core	1.0	10.00	9.00	11.00	10.00	9.00	11.00																
¥88			Bood Plu	2929 Bood Phy 2 mil (X1)		2.00	190	2.10	2.00	1.90	2.10										-				=		
005	15	RF3 Sinnal - resistors	Matal	C110 Conner Bollert Resistors	0.5	0.09	0.00	0.00	0.00	0.09	0.00										1			8412			
눈눈옷	1.2	To be begins a first start of a	Cababata	CITE-XT Care	10.0	10.00	0.00	11.00	10.00	9.00	11.00												the state of the s	DHE	~		
0	10	PE3 Ground	Motol	C110 Cremer Polled	10	1 28	1 30	1 28	1.08	1.08	1.08													and the			
	10	Pero Ground	Rood Riv	2020 Bood Phy 2 mil (22)	1.62	6.00	8.70	6.20	5.00	5.70	6.20			L I													
	17	RE4 Ground	Motol	Citil Concer, Boled	0.5	0.00	0.00	0.00	1.20	1.20	1.00												Real Property			-	
÷. 🖁		Are citotra	Substrate	CLTE XT Corol(s)	10.0	5.00	4.00	5 10	5.00	4.00	5.10												DHI				
N N N			Boost Bir	2020 Bood Phy 2 mil (VII)		200	100	2.10	2.00	1.00	2.10											$H \vdash$	and			\vdash \vdash	
355	18	PE4 Signal	Biotol 1	C110 Concer, Poloti	0.5	0.00	0.60	0.50	0.60	0.59	0.60			1													
눈 눈 것	10	rea signar	Substrate	CLTE VT Core	0.0	10.00	0.00	11.00	10.00	0.00	11.00																
- 0	10	DE4 Crewed	Matal	C110 Corport Polici	1.5	201	207	2.07	2.97	3.00	2.97																
	10	HF4 Ground	INCO.	Cirio Copper, Holed	1.0	207	2.07	200	3.8/	0.6V	3.87			40	80	8.0	8.0	80	10.0	80	80	40		20.0		20.0	108.0
						Tetal	Thiskney	(mill)	Tofat Bio		400 mm			-10	0.0	0.0	0.0	0.0	10.0	0.0	0.0	7.0		20.0		20.0	180.0
		Lover Court	10	PE? PE3 or congrate		100	min	0000	0000	min	max	WD															
		Proce Court	7	DE7 and DE7 and DE4 as sub-law		149.8	142.9	180.9	160.0	162.4	160.4	4			7.87	7 69	0.95	8.97	0.01	7.61	2.66	2.41		7.10		2.62	0.79
	<u> </u>	Press Coulte	1	PET and DO/Dia/0577 as separate		148.0	142.0	10410	100.0	102.4	100.4		2.40	2.02	2.08	0.80	0.07	0.01	2.01	2.00	0.41		7.19		2.02	0.70	
		PE cost cost for the	0.5	I ave 2 to Cod																							
		N- Gra Cu Weght	0.5 02	Laver 3 to Gnd				_						. 0	11		het.	a : I :		11-				Dre		0.0	
		DC Cu Weight	0.5 02	R0-1 10								Laver Sta			Ŏ		a	Jet	alls	5	we	CD	anı	cal	PI0	pert	les –
		RF Signal Cu Walght	0.5 62	-				_						. ~	•	-											
												16 n	netal	L a	/erg	2											
												101	icia	i iaj		-					TE	mo	tob	need		iow	
	Notes:											Deer	are l	A	and							1112	non	neec	12 16/	new	
												Rogers (Arlon)								-	Te he	1.5.4		457	A Law		24000
					-							rtogers (Anon)									010	1 N/12	100'	10/0		m ///	1 K 11</td

The Rework Stack-Ups (3 Similar Asia Transfers with NA DFM Rules)

	-				<u> </u>		•	· ·		· 1			Impedar	ice labi	2			
	Cu	Cu Foil					Lam Thick											
Lavar	(mile)	wt (oz)				DK	(mile)	Description				Target	Impedance	Target	Proposed		Modelled	Modelled
Layer	(mills)	WI (02)	_			UK	(mis)	Description			Coated	Impedance	Tolerance	Linewidth	Linespacin	Reference	Linewidth	Impedance
1	2.10	.5 0Z	I			3.47	3.10	Prepreg R5620 1078	Layer	Structure Type	Microstrip	(ohms)	(ohms)	(mils)	g (mils)	Layers	(mils)	(ohms)
2	0.60	.5 oz				2.76	5.00	Core D5725 Emile 5 oz / 5 oz 1078v2 DTE	1	Single Ended	Yes	33.00	+1-5	11.00		(2)		32.90
3	0.60	.5 oz	×			3.70	5.00	Core R5725 5mills .5 027.5 02 1076X2 RTF	1	Single Ended	Yes	40.00	+1-5	7.90		(2)		39.90
4	0.60	5.07				3.38	8.05	Prepreg R5620 1067/1078/1067	1	Single Ended	Yes	50.00	+/-5	5.00		(2)		50.08
,	0.00	5				3.76	5.00	Core R5725 5mils .5 oz / .5 oz 1078x2 RTF	1	Edge Coupled Differential	Yes	75.00	+/-7.5	6.70	5.30	(2)	6.70	75.06
5	0.60	.5 02				3.38	8.05	Prepreg R5620 1067/1078/1067	1	Edge Coupled Differential	Yes	88.00	+/-8.8	5.50	8.50	(2)	5.50	88.41
6	0.60	.5 oz	8			3.76	5.00	Core R5725 5mils .5 oz / .5 oz 1078x2 RTF	1	Edge Coupled Differential	Yes	100.00	+/-10	4.70	14.30	(2)	4.70	99.47
7	0.60	.5 oz	<u> </u>			2.20	7.05	Prepres D5620 1078/1067/1078	3	Single Ended		33.00	+1-5	12.20		(2, 4)		33.20
8	2.50	2 oz	i.			5.50	7.55	Prepred R3020 T070/T070	3	Single Ended		38.00	+1-5	9.80		(2, 4)		38.21
9	2.50	2 oz	×			4.00	2.00	Core R5/25 2mils 2 oz / 2 oz 106/x1	3	Single Ended		50.00	+/-5	6.00		(2, 4)		50.32
10	2 50	2.07				3.33	3.85	Prepreg R5620 1067/1067	3	Edge Coupled Differential		75.00	+/-7.5	8.30	4.70	(2, 4)	8.30	74.88
44	2.00	2	**			4.00	2.00	Core R5725 2mils 2 oz / 2 oz 1067x1	3	Edge Coupled Differential		88.00	+/-8.8	6.80	7.20	(2, 4)	6.80	88.14
	2.50	2 02				3.38	7.95	Prepreg R5620 1078/1067/1078	3	Edge Coupled Differential		100.00	+/-10	6.00	14.50	(2, 4)	6.00	99.46
12	0.60	.5 oz	8			3.76	5.00	Core R5725 5mils .5 oz / .5 oz 1078x2 RTF	5	Single Ended		33.00	+1-5	12.20		(4, 6)		33.20
13	0.60	.5 oz				3 38	8.05	Prepreg R5620 1067/1078/1067	5	Single Ended		38.00	+1-5	9.80		(4, 6)		38.21
14	0.60	.5 oz	i de la como			0.00	5.00	Care DE725 Emile E en / 5 en 1079v2 DTE	5	Single Ended		50.00	+/-5	6.00		(4, 6)		50.32
15	0.60	.5 oz	ř			3.70	5.00	COTE R5725 STILLS .5 027.5 02 1070X2 RTF	5	Edge Coupled Differential		75.00	+/-7.5	8.30	4.70	(4, 6)	8.30	74.88
16	0.60	.5 oz				3.38	8.05	Prepreg R5620 1067/1078/1067	5	Edge Coupled Differential		88.00	+/-8.8	6.80	7.20	(4, 6)	6.80	88.14
17	0.60	5.07	2			3.76	5.00	Core R5725 5mils .5 oz / .5 oz 1078x2 RTF	5	Edge Coupled Differential		100.00	+/-10	6.00	14.50	(4, 6)	6.00	99.46
10	0.00	.5 02				3.47	3.10	Prepreg R5620 1078	7	Single Ended		33.00	+1-5	12.20		(6, 8)		33.07
18	2.10	.5 0Z	-					Foll, .5 oz Reduce to .333 o z	7	Single Ended		38.00	+1-5	9.80		(6, 8)		38.07
Layer	s	Drill Typ	е				109.35	Thickness over Laminate	7	Single Ended		50.00	+/-5	6.00		(6, 8)		50.17
1 - 18		PTH		Via	filling		113.55	Thickness over Copper										I

Altium

North America Design Rules: 8mil/16mil/28mil drill/back₁drill/antipad

114.95 Thickness over Soldermask

The Rework Stack-Ups (3 Similar Asia Transfers with NA DFM Rules) **Altium**

North America Design Rules: 8mil/16mil/28mil drill/back-drill/antipad China Design Rules: 10mil/18mil/33mil drill/back-drill/antipad

Designer Re-routed all layers to transfer 3 similar PCBs to China during Christmas break 2014!!

				Impedar	nce Tabl	e		_		7	Edge Coupled Differential		75.00	+1-7.5	8.30	4.70	(6, 8)	8.30	74.72
			Target	Impodance	Taraat	Proposed		Modellad	Modellad	7	Edge Coupled Differential		88.00	+/-8.8	6.80	7.20	(6, 8)	6.80	87.95
		Coated	Impedance	Tolerance	Linewidth	Linespacin	Reference	Linewidth	Impedance	7	Edge Coupled Differential		100.00	+/-10	6.00	14.50	(6, 8)	6.00	99.19
Layer	Structure Type	Microstrip	(ohms)	(ohms)	(mils)	g (mils)	Layers	(mils)	(ohms)	12	Single Ended		33.00	+1-5	12.20		(11, 13)		33.07
1	Single Ended	Yes	33.00	+/-5	11.00		(2)		32.90	12	Single Ended		38.00	+1-5	9.80		(11, 13)		38.07
1	Single Ended	Yes	40.00	+/-5	7.90		(2)		39.90	12	Single Ended		50.00	+/-5	6.00		(11, 13)		50.17
1	Single Ended	Yes	50.00	+/-5	5.00		(2)		50.08	12	Edge Coupled Differential		75.00	+1-7.5	8.30	4.70	(11, 13)	8.30	74.72
1	Edge Coupled Differential	Yes	75.00	+1-7.5	6.70	5.30	(2)	6.70	75.06	12	Edge Coupled Differential		88.00	+/-8.8	6.80	7.20	(11, 13)	6.80	87.95
1	Edge Coupled Differential	Yes	88.00	+/-8.8	5.50	8.50	(2)	5.50	88.41	12	Edge Coupled Differential		100.00	+/-10	6.00	14.50	(11, 13)	6.00	99.19
1	Edge Coupled Differential	Yes	100.00	+/-10	4.70	14.30	(2)	4.70	99.47	14	Single Ended		33.00	+1-5	12.20		(13, 15)		33.20
3	Single Ended		33.00	+1-5	12.20		(2, 4)		33.20	14	Single Ended		38.00	+1-5	9.80		(13, 15)		38.21
3	Single Ended		38.00	+1-5	9.80		(2, 4)		38.21	14	Single Ended		50.00	+/-5	6.00		(13, 15)		50.32
3	Single Ended		50.00	+/-5	6.00		(2, 4)		50.32	14	Edge Coupled Differential		75.00	+/-7.5	8.30	4.70	(13, 15)	8.30	74.88
3	Edge Coupled Differential		75.00	+1-7.5	8.30	4.70	(2, 4)	8.30	74.88	14	Edge Coupled Differential		88.00	+/-8.8	6.80	7.20	(13, 15)	6.80	88.14
3	Edge Coupled Differential		88.00	+/-8.8	6.80	7.20	(2, 4)	6.80	88.14	14	Edge Coupled Differential		100.00	+/-10	6.00	14.50	(13, 15)	6.00	99.46
3	Edge Coupled Differential		100.00	+/-10	6.00	14.50	(2, 4)	6.00	99.46	16	Single Ended		33.00	+1-5	12.20		(15, 17)		33.13
5	Single Ended		33.00	+1-5	12.20		(4, 6)		33.20	16	Single Ended		38.00	+1-5	9.80		(15, 17)		38.16
5	Single Ended		38.00	+1-5	9.80		(4, 6)		38.21	16	Single Ended		50.00	+/-5	6.00		(15, 17)		50.35
5	Single Ended		50.00	+/-5	6.00		(4, 6)		50.32	16	Edge Coupled Differential		75.00	+1-7.5	8.30	4.70	(15, 17)	8.30	75.13
5	Edge Coupled Differential		75.00	+1-7.5	8.30	4.70	(4, 6)	8.30	74.88	16	Edge Coupled Differential		88.00	+/-8.8	6.80	7.20	(15, 17)	6.80	88.42
5	Edge Coupled Differential		88.00	+/-8.8	6.80	7.20	(4, 6)	6.80	88.14	16	Edge Coupled Differential		100.00	+/-10	6.00	14.50	(15, 17)	6.00	99.62
5	Edge Coupled Differential		100.00	+/-10	6.00	14.50	(4, 6)	6.00	99.46	18	Single Ended	Yes	33.00	+1-5	11.00		(17)		32.90
7	Single Ended		33.00	+1-5	12.20		(6, 8)		33.07	18	Single Ended	Yes	40.00	+1-5	7.90		(17)		39.90
7	Single Ended		38.00	+1-5	9.80		(6, 8)		38.07	18	Single Ended	Yes	50.00	+/-5	5.00		(17)		50.08
7	Single Ended		50.00	+/-5	6.00		(6, 8)		50.17	18	Edge Coupled Differential	Yes	75.00	+1-7.5	6.70	5.30	(17)	6.70	75.06

...is any product which is accidentally designed with DFM guidelines provided by a capable, high-tech, quick-turn prototype supplier, without knowledge of mass production limitations and requirements of increased dimensions and/or tolerances.

The following story is true, and no names are used to protect the innocent. We received permission to use these files.

Medical Mass Production Stack-up – 10L,1 Lam Through-hole

	Π			
				0
2		 -	100	

Layer	Туре	CU Weight	CU %	Material Description	VIa Structure	Segment	Glass Style	Material Family	Dielectric constant	Copper Plating Thiokness [mil]	Thickness after lamination [mil]
Soldermask L1	Signal	н	20	Press thk = 3.82 mil		Foil Prepreg	106(75)	IT180A	4,10	1.40	0.80 2.00 * 3.82
							106(75)	IT180A	4.10		
L2	Plane	н	70	4.0 mil H/H		Core		IT180A	4.10		0.60 4.00
L3	Signal	н	20	Proce the = 12.24 mil		Proprog	1090(85)	171904	4.10		0.60
						riepieg	2113(58) 2113(58) 2113(58)	IT 180A IT 180A IT 180A	4.10 4.10 4.10 4.10		12.24
L4	Signal	н	20	4.0 mil H/1		Core	2110(00)	IT180A	4.10		0.60 4.00
L5	Plane	1.0	70	<u> </u>							1.20
				Press thk = 3.28 mil		Prepreg	106(75) 106(75)	IT180A IT180A	4.10 4.10		3.28
L6	Plane	1.0	70								1.20
L7	Signal	н	20	4.0 mil 1/H		Core		11180A	4.10		4.00
				Press thk = 12.24 mil		Prepreg	2113(58) 2113(58) 2113(58)	IT180A IT180A IT180A	4.10 4.10 4.10		12.24
L8	Signal	н	20	4.0 mil H/H		Core	1080(00)	IT180A	4.10		0.60
L9	Plane	н	70								0.60
				Press thk = 3.82 mil		Prepreg	106(75) 106(75)	IT180A IT180A	4.10 4.10		3.82
L10 Soldermask	Signal	н	20			Foil				1.40	2.00 * 0.80

* Estimated Cu Plating for reference use only.

Specification (Over mask on plated copper:):	mil
Overall Board Thickness:	63.00
Tolerance:	+6.3/-6.3
Min-Max Board Thickness:	56.7-69.3

Anticipated Board Thickness:	mil
After lamination:	58.60
Over mask on plated copper::	63.00

Medical Mass Production Stack-up – 1 Lam Through-hole

Altium

Impedance	e Table												
Layer	Impedance Requiremnt [ohms]	Tolera [ohr	ance ns]	Туре	Upper Ref	Lower Ref	Designed Line Width	Plotted Line Width	Designed Spacing	Coplanar Spacing	Finished Line Width	Finished Spacing	Impedance Simulation
	[sinns]	+	-				[mil]	[mil]	[mil]	[mil]	[mil]	[mil]	[ohms]
L1	40	4.0	4.0	Coated microstrip SE		L2	9.50	10.00			9.50		40.3
L1	50	5.0	5.0	Coated microstrip SE		L2	6.00	6.50	-		6.00		50.4
L1	90	9.0	9.0	Coated microstrip Diff	-	L2	5.00	5.50	6.00		5.00	6.00	90.5
L1	100	10.0	10.0	Coated microstrip Diff		L2	4.50	5.00	8.00		4.50	8.00	99.9
L3	40	4.0	4.0	Single-Ended	L5	L2	8.00	9.25	-		8.75		41.0
L3	50	5.0	5.0	Single-Ended	L5	L2	6.00	6.50	-		6.00		50.1
L3	80	8.0	8.0	Differential	L5	L2	7.00	7.50	5.00		7.00	5.00	79.8
L3	90	9.0	9.0	Differential	L5	L2	5.50	6.00	5.50		5.50	5.50	90.6
L3	100	10.0	10.0	Differential	L5	L2	5.00	5.50	8.00		5.00	8.00	100.1
L4	40	4.0	4.0	Single-Ended	L2	L5	8.00	9.25	-		8.75		41.0
L4	50	5.0	5.0	Single-Ended	L2	L5	6.00	6.50	-		6.00		50.1
L4	90	9.0	9.0	Differential	L2	L5	5.50	6.00	5.50		5.50	5.50	90.6
L4	100	10.0	10.0	Differential	L2	L5	5.00	5.50	8.00		5.00	8.00	100.1
L7	40	4.0	4.0	Single-Ended	L9	L6	8.00	9.25	-		8.75		41.0
L7	50	5.0	5.0	Single-Ended	L9	L6	6.00	6.50	-		6.00		50.1
L7	90	9.0	9.0	Differential	L9	L6	5.50	6.00	5.50		5.50	5.50	90.6
L7	100	10.0	10.0	Differential	L9	L6	5.00	5.50	8.00		5.00	8.00	100.1
L8	40	4.0	4.0	Single-Ended	L6	L9	8.00	9.25	-		8.75		41.0
L8	50	5.0	5.0	Single-Ended	L6	L9	6.00	6.50	-		6.00		50.1
L8	90	9.0	9.0	Differential	L6	L9	5.50	6.00	5.50	-	5.50	5.50	90.6
L8	100	10.0	10.0	Differential	L6	L9	5.00	5.50	8.00	-	5.00	8.00	100.1
L10	40	4.0	4.0	Coated microstrip SE	-	L9	9.50	10.00	-	-	9.50		40.3
L10	50	5.0	5.0	Coated microstrip SE		L9	6.00	6.50	-		6.00		50.4
L10	90	9.0	9.0	Coated microstrip Diff		L9	5.00	5.50	6.00		5.00	6.00	90.5
L10	100	10.0	10.0	Coated microstrip Diff		L9	4.50	5.00	8.00		4.50	8.00	99.9

1) .063in thick, **5mil mechanically drilled through-holes** (8:1 aspect ratio <8mil drills, who drills 5mil mech drill in production???)

- 2) 5mil and 6mil mechanical vias on 8, 10.24mil pads (insufficient annular ring)
- 3) 2.54mil distance drill-to-Cu (8mil min STD, 7mil ADV)
- 4) 2.5mil lines/spaces on Outer Layers with VIPPO

Medical Mass Production Stack-up – DFM Violation – A/R

Altium

#5 Via holes 127mil (5mil) and 150mil (5.9mil) drill with 5.9mil drill on copper pads of 5mil, 8mil, 10.236mil, 10.5mil and 10.63mil does not give Class 2 Annular Ring and will give break-out on all holes on all positive layer inner layers and outer layers.

There is no room to increase copper pads since design has spacing from 2.06mil to less than 3mil. (We required minimum design copper pads on all positive layers for these via are 14mil to get class 2 annular ring and avoid break-out on all layers) (As per note# 6 (c) break-outs not allowed). Please see an Attached image and advise.

Medical Mass Production Stack-up – DFM Violation Drill-to-Cu

Altium

#8 On inner layer 2, layer 5, layer 6, layer 7 and layer 9 plated holes to copper (black) range from 2.542 mil to 2.9 mil for via 127mil and 150mil. (5mil and 5.9mil) We require minimum clearance Drill-to-Cu of 8mil each side (drill+16 pads).

Medical Mass Production Stack-up – O/L Space Violation

Altium

#9 On outer layer design spacing range from 2.5mil to 3mil. Since via will be epoxy fill and plated over, we have to apply minimum of 1mil etch comp. For 1mil etch comp, we require minimum 4mil design spacing between any two copper features.

Medical Mass Production Stack-up – KEY DESIGN PROBLEM

Altium

#9 On outer layer design spacing range from 2.5mil to 3mil. Since via will be epoxy fill and plated over, we have to apply minimum of 1mil etch comp. For 1mil etch comp, we require minimum 4mil design spacing between any two copper features.

Designer's Real Problem: U23 fan-out established the min trace/widths that carried through the rest of the design, but it wasn't identified in the DFM. Could he re-design to meet cost-effective guidelines?

Medical Mass Production Stack-up – KEY DESIGN PROBLEM FIXED

Altium

#9 On outer layer design spacing range from 2.5mil to 3mil. Since via will be epoxy fill and plated over, we have to apply minimum of 1mil etch comp. For 1mil etch comp, we require minimum 4mil design spacing between any two copper features.

Designer's FIX: U3 fan-out modified to increase lines/spaces by removing traces running between BGA pads.

Original Design had 2.5mil/2.5mil lines/spaces

Re-Design has 6mil/9.5mil lines/spaces

Medical Mass Production Stack-up – NEW 2 LAM STACK-UP

Replaced impossible-in-Asia 5mil/8-10mil drills/pads with 4mil uvias

Altium

Waivers - Customer approval of stackup includes approval of: 1: Dielectrics thickness and trace widths have been adjusted to meet target impedances. Notes / Comments:

1- Please include approved stackup with final data set.

Microvias 1-2 and 2-3 to be copper filled.

Through vias filled with non-conductive epoxy.

				Starting			L		Single	Ended 1	Model		L			I	Different	ial Mode	al (
				Dielectric	Nominal	Tolerance	T R	Org.		Fin.	Ref.	Cale.	Y R	Org.	Org.			Fin.	Fin.	Ref.	Cale.		
					- Macin		#	L/W		ı,∕w	Plane	Imp.	#	ı,/w	space			ı,/₩	space	Plane	Imp.		
1 MP_	3	/8 oz + Plating	3/8		2.55		1	6		5.25	2	50	1	4.5	8			4	8.5	2	100		
													1	5	6			4.6	6.4	2	90		
	1080 (7	71%)		=>	3.55																		
2 P	3	/8 os + Pl tin	3/8		0.60																		
	1060 (7	71%)		=>	3.45																		
3 MP			н		0.65		3	6		5	2,5	50	3	7	5			6.3	5.7	2,5	80		
	Co	re		=>	12.00																		
4 MP			н		0.65		4	6		6.2	2,5	50											
	2x106 (76%)		=>	4.40																		
5 P			1		1.30																		
	Co	re		=>	5.00																		
6 P			1		1.30																		
	2x106 (76%)		=>	4.45																		
7 P			н		0.65																		
	Co	re		=>	12.00																		
8 MP			H		0.65		8	6		4.8	7,9	50	8	5	8			4.4	8.6	7,9	100		
	1080 (7	71%)		=>	3.45																		
L _																							
9 P	3	/8 oz + Pl tin	3/8		0.60																	\square	
	1080 (7	71%)		=>	3.55																		
_													10	5	6			4.6	6.4	9	90		
10 MP	3	/8 oz + Plating	3/8		2.55		10	6		5.25	9	50											
	Thickness After plating			ting	63.35			not inch	iding sol	der mask		Units					Mils						
	Target Thickness				63+/-10%			0	ver	All		Impeda	nce 7	Foleranc	e	(SE)		+/-10%	(DIFF)		+/- 10%		

The Potato Chip Stack-up?

Altium

Board thickness:128mil+/-10%(over mask on plated copper)

Laver	Cu Thick. (mils)	Cu Foil		DK(2G Hz)	Lam. Thick.	Description		De	sigr
1	1.80	.333 oz		3.34	3.17	Foil .333 oz Prepred R5670G 1078(68)		cor	npl
2	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP			
3	0.55	0.5 oz		3.25	4.14	Prepreg R5670G 1035(70)/1035(70)		wil	l se
4	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP			ha
5	0.55	0.5 oz	1919 1 919	3.25	4.14	Prepreg R5670G 1035(70)/1035(70)		IS L	nes
6	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP			
7	0.55	0.5 oz		3.25	4.14	Prepreg R5670G 1035(70)/1035(70)		Cu	
8	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP		Thick.	Cu Fo
9	0.55	0.5 oz	1919 1919	3.25	4.14	Prepreg R5670G 1035(70)/1035(70)	Layer	(mils)	wt (o
10	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP	1	1.80	.333 0
11	0.55	0.5 oz		3.25	4.25	Prepreg R5670G 1035(70)/1035(70)	2	0.55	0.5.05
12	0.55	0.5 oz		3.58	2.60	Core R5775G 2.60mils 1x1080 0.5 oz / 0.5 oz HVLP	2	0.00	0.5 02
13	0.55	0.5 oz		3.34	3.06	Prepreg R5670G 1078(68)	3	0.55	0.5 oz
14	0.55	0.5 oz		3.58	2.60	Core R5775G 2.60mils 1x1080 0.5 oz / 0.5 oz HVLP	4	0.55	0.5.07
15	0.55	0.5 oz		3.34	3.28	Prepreg R5670G 1078(68)	-	0.55	0.5 02
16	1.00	.333 oz		3.40	5.20	Foil .333 oz Prepreg R5670G 1080(64)/1080(64)	5	0.55	0.5 oz
17	1.00	.333 oz	·····	3.34	3.28	Foil .333 oz Prepreg R5670G 1078(68)	6	0.55	0.5 oz
18	0.55	0.5 oz		3.58	2.60	Core R5775G 2.60mils 1x1080 0.5 oz / 0.5 oz HVLP	_		
19	0.55	0.5 oz		3.34	3.06	Prepreg R5670G 1078(68)	7	0.55	0.5 02
20	0.55	0.5 oz		3.58	2.60	Core R5775G 2.60mils 1x1080 0.5 oz / 0.5 oz HVLP	8	0.55	0.5 oz
21	0.55	0.5 oz		3.25	4.25	Prepreg R5670G 1035(70)/1035(70)	0	0.55	0.5
22	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP	9	0.55	0.5 02
23	0.55	0.5 oz		3.25	4.14	Prepreg R5670G 1035(70)/1035(70)	10	0.55	0.5 oz
24	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP	11	0.55	0.5.07
25	0.55	0.5 oz		3.25	4.14	Prepreg R5670G 1035(70)/1035(70)		0.55	0.5 02
26	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP	12	0.55	0.5 oz
27	0.55	0.5 oz		3.25	4.14	Prepreg R5670G 1035(70)/1035(70)	13	0.55	0.5 oz
28	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP			
29	0.55	0.5 oz		3.25	4.14	Prepreg R5670G 1035(70)/1035(70)	14	0.55	0.5 02
30	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP	15	0.55	0.5 oz
31	0.55	0.5 oz	- · · ·	3.34	3.17	Prepreg R5670G 1078(68)	46	1.00	222
32	1.80	.333 oz				Foil 333 oz	10	1.00	.3330

Designer wants to use one half of the left stack-up for a complete 16L board and maintain much of the design. This will set the precedence for multiple, long life-cycle products. Is the stack-up below feasible?

Cu Foil wt (oz)				DK(2G Hz)	Lam. Thick. (mils)	Description
.333 oz	-:-:	ÌŤ) I I I I I I I I I I I I I I I I I I I	3.34	3.17	Foil .333 oz Prepreg R5670G 1078(68)
0.5 0Z				3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
0.5 02				3.25	4.14	Prepreg R5670G 1035(70)/1035(70)
0.5 02	8	*		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
0.5 02				3.25	4.14	Prepreg R5670G 1035(70)/1035(70)
0.5 07		2		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
0.5 02				3.25	4.14	Prepreg R5670G 1035(70)/1035(70)
0.5.07	8	2		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
0.5 oz				3.25	4.14	Prepreg R5670G 1035(70)/1035(70)
0.5.07		2		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
0.5 oz		2		3.25	4.25	Prepreg R5670G 1035(70)/1035(70)
0.5 oz				3.58	2.60	Core R5775G 2.60mils 1x1080 0.5 oz / 0.5 oz HVLP
0.5 oz		2		3.34	3.06	Prepreg R5670G 1078(68)
0.5 oz				3.58	2.60	Core R5775G 2.60mils 1x1080 0.5 oz / 0.5 oz HVLP
.333 oz				3.34	3.28	Prepreg R5670G 1078(68) Foil .333 oz

The Potato Chip Stack-up?

Altium

Designer thinks they can use one half of the left stack-up for a complete 16L board and maintain much of the design. This Will set the precedence for multiple, long life-cycle products. Is the stack-up below feasible?

	Cu Thick.	Cu Foil			Lam. Thick.	
Layer	(mils)	wt (oz)		DK(2G Hz)	(mils)	Description
1	1.80	.333 oz		2.24	2.17	Foil .333 oz
2	0.55	0.5 oz		5.54	3.17	
3	0.55	0.5 oz		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
А	0.55	0.5.07		3.25	4.14	Prepreg R5670G 1035(70)/1035(70)
-	0.55	0.5 02		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
5	0.55	0.5 OZ	8	3.25	4.14	Prepreg R5670G 1035(70)/1035(70)
6	0.55	0.5 oz		3.42	3.00	Core R5775G 3 00mils 1x1078 0 5 oz / 0 5 oz HVLP
7	0.55	0.5 oz		2.05	4.44	Dreprez D5670C 1025/70\/1025/70\
8	0.55	0.5 oz	9 R 2009 R 20	3.20	4.14	Prepreg R5670G 1035(70)/1035(70)
9	0.55	0.5.07		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
40	0.55	0.5 02		3.25	4.14	Prepreg R5670G 1035(70)/1035(70)
10	0.00	0.5 02		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
11	0.55	0.5 oz		3.25	4 25	Prepreg R5670G 1035(70)/1035(70)
12	0.55	0.5 oz		2.50	2.60	Corp. D5775C 2 C0mile 4v4000 0 5 cm / 0 5 cm / 0 /
13	0.55	0.5 oz		3.58	2.60	Core R5775G 2.60mils 1x1080 0.5 627 0.5 62 HVLP
14	0.55	0.5.07		3.34	3.06	Prepreg R5670G 1078(68)
45	0.55	0.5 02		3.58	2.60	Core R5775G 2.60mils 1x1080 0.5 oz / 0.5 oz HVLP
10	0.00	0.5 02	ta en essen musi	3.34	3.28	Prepreg R5670G 1078(68)
16	1.00	.333 oz		-		Foil .333 oz

	Cu					
	Thick.	Cu Foil			Lam. Thick.	
Layer	(mils)	wt (oz)		DK(2G Hz)	(mils)	Description
1	1.80	.333 oz	A.A.A.A.A			Foil .333 oz
2	0.55	0.5.07		3.34	3.17	Prepreg R5670G 1078(68)
2	0.55	0.5 02		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
3	0.55	0.5 oz		0.05		Deserve DE070.0 4005/70/(4005/70)
4	0.55	0.5.07		3.25	4.14	Prepred R56/0G 1035(70)/1035(70)
	0.00			3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
5	0.55	0.5 oz		3.25	4 14	Prepred R5670G 1035(70)/1035(70)
6	0.55	0.5 oz		5.25	4.14	Thepreg ((50700-1055(70)/1055(70)
-	0.55			3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
1	0.55	0.5 oz	ik se sikada saadi	3.25	4 14	Prepred R5670G 1035(70)/1035(70)
8	0.55	0.5 oz		0.20		1 lopiog (loci to 1000(10), 1000(10)
0	0.55	0.5.07		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP
9	0.55	0.5 02	8 a 1818 and	3.25	4.14	Prepreg R5670G 1035(70)/1035(70)
10	0.55	0.5 oz		0.40		
11	0.55	0.5.07		3.42	3.00	Core R5775G 3.00mils 1x1078 0.5 oz 7 0.5 oz HVLP
	0.00	0.0 02	ik er elkek resti	3.25	4.14	Prepreg R5670G 1035(70)/1035(70)
12	0.55	0.5 oz		2.50	2.00	Core DE77EG 2 00mile 1/1079 0 E or / 0 E or US/LD)
13	0.55	0.5 oz		3.00	00.000	One harrad addinis tatoro da der da de hirer.
				3.34	4.14	Prepreg R5670G 1035(70)/1035(70)
14	0.55	0.5 oz		3.58	3.00	Core R5775G 3.00mils 1x1078 0.5 cz / 0.5 cz H/LP>
15	0.55	0.5 oz		0.00		
16	1.00	222.07		3.34	3.28	Prepreg R5670G 1078(68)
10	1.00	.333.02	· · · · · · · · · · · · · · · · · · ·			P0II .353 02

ANSWER: Yes, if the stack-up can be made symmetric by Matching Layers 11 - 15 to Layers 2 - 6.

> 4.14 Prepreg R5670G 1035(70)/1035(70)

- Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP 3.00
- 4,14 Prepreg R5670G 1035(70)/1035(70)

3

5

Core R5775G 3.00mils 1x1078 0.5 oz / 0.5 oz HVLP 3.00

PCB Layer Stack-Up Agenda

Introduction – Why learn about PCB Stack-Ups?

PCB Layer Stack-Up Physics

Communicating About Stack-Ups and What Do You Ask?

- **Tools and Processes**
- 5
- Altium Designer 19 Implementation Examples

How do we mitigate these problems?

With understanding of PCB Board Level Physics!

PCB Board Physics – Making our Electro-Mechanical Choices

-Conductors

-Dielectrics

-Process

Altium。

Begin with the end in mind

Altium .

3 stage process:

- 1)Put the physical requirements in the design
- 2)Communicate clear intent
- 3) Create the documentation

Altium_®

PCB Layer Stack-Up Agenda

Introduction – Why learn about PCB Stack-Ups?

PCB Layer Stack-Up Physics

Design Considerations and Communication

Tools and Processes

Altium Designer 19 Implementation Examples

"Can you please send your design guidelines?"

22 fab sites = 22 similar, not exactly the same, DFM guidelines

What is your Technology Requirement?

Altium

Single Lamination Multiple Lam Mech Drills Mech Drills

- Conventional **Through Hole**
- >0.65mm BGA
- Min .008" drill
- 4mil line/space
- 10:1 aspect ratio

Heavy Copper

- > 2oz. Cu foil
- - High Voltage/Amps
 - Single or multiple lam
 - Increased lines/spaces
 - for etch capability
- Special-order material

Standard HDI > 0.4mm BGA

- 4mil laser uvias
- Up to 12 oz. Inner Layers 10mil pads
 - Offset uvias
 - 3mil min lines
 - 1 or more lams
 - Offset uvias
 - Stacked uvias

Micro HDI ≤ 0.4mm BGA

- Advanced materials • 3-4mil laser uvias Cavities • 8.8mil pads • 2.36mil lines/spaces • Horizontal Launch Stacked uvias • Filters, antennas • Multiple lam cycles • Controlled etch CONTACT TTM • Hybrid stack-ups
 - Multiple lam cycles

RF &

Microwave

CONTACT TTM

Flex

Rigid-Flex

• Through Hole • Min .008" drill

• 10:1 Aspect Ratio

• Blind vias

Buried vias

- - Lamination cycles= press+drill+plate
 - Significant cost
- Increases cost & lead time

What is your Design-for-Final-Volume Plan?

Do we need Seamless Global Transfer?

Design For Volume (DFV)

Altium

- Plan ahead for "Seamless Global Transfer, if necessary"
- What are proto quantities, lead time?
- Where will prototypes be built?
- Where is final production site?
 - Technology required
 - Volumes
- Which site builds long-term reliability testing units?
- Are minor changes occur between prototypes and final production units allowed?
 - Materials, glass styles, resin %
 - Plated layers final Cu thickness
 - Linewidths adjusted to meet controlled impedance requirements
- Design for Volume, DFV: Use Design Guidelines and Stack-up from Final Production Site and duplicate them at your prototype site to achieve "Seamless Global Transfer"

PCB Technology Requirements and Cost Factors

- 1) **Manufacturing Panel Utilization** (how many PCBs fit on the master panel)
- 2) Performance Class (IPC-6012D Class 2, 3, A, S, or MIL-PRF-55110/31032, IPC-6013 (Flex, rigid-flex), IPC-6018 (RF))
- 3) **Layer Count** (total number of required cores) #cores = (#Layers-2)/2
- **Type of dielectric Material** (Standard, mid-loss, low-loss, Teflon, polyimide/flex, lead time, processing complications) 4)
- **Number of Lamination Cycles** each cycle requires lam/drill/plate/etch *est.+25% per lam cycle* 5)
- 6) **Via Protection** – consider if solder will flow down via holes in a soldered thermal pad, or adjacent to a soldered pad
- 7) HDI (via-in-pad, multiple lam cycles, requires enabling equipment)
- Design Complexity STANDARD (green), ADVANCED (yellow), or Engineering (red) capability 8)
 - Line Widths and Feature Spacing
 - 4/4mil STD, 3/3mil +23-30%, 2.5/2/5mil +50% require LDI
 - Controlled Impedance (CI) requirement & tolerance
 - 10%CI STD, 7%CI +20%, 5%CI +30% (if process-capable)
 - **Drilled Hole Size** (Aspect Ratio = PCB Thickness: Drill Diameter)
 - 25K drills/panel STD, extra 10K +1-2%, +15-20%
 - Laser drilled microvias
 - **Requires special plating process**
 - **Overall PCB Thickness** (Equipment Limitations)/ Aspect Ratios
 - <10:1 STD, 10-11.99:1 +10-15%, 12-12.99:1 +20-25%
 - **Annular Ring Requirements vs Design** (Registration Capabilities)
 - **Copper Weights** (Cost, Availability, and impact on Etching)
- **Special requirements** (routed cavities, castellations, edge plating, controlled depth drill, back-drill, solder mask plugged vias, or VIPPO) 9)
- Process Yield (often a Hidden Cost based on DFM violations!) 10)

8.150" × 11.0"

PCB

8.150" x 11.0"

PCB

8.150" x 11.0"

CB or array

8.150" × 11.0"

PCB

Poor Panel Utilization

Altium

Total usable area 371 in² total Circuit area (including assembly rails) 187 in² 50% panel utilization

PCB COST = 2X

Add 0.5" rails to the long sides, and we reduce the panel to 2-up

What should you provide to your fabricator for a Stack-up?

- **Top Level Specification/s** (ITAR, MIL-PRF-55110/31032, IPC-6012 Class 2/3, A/S, 6013 (Flex), 6018 (RF))
- Location of final production site (ITAR stays in North America, otherwise Design for Volume, DFV)
- Material
- □ Overall thickness (tol +/-10%)
- □ # of Layers
 - Cu thickness per layer
 - □ Signal, Plane (PWR/GND), or Mixed assignment for each layer
 - Controlled impedance requirements per layer
 - □ Min lines/spaces when <3.7mil
 - Estimated dielectric thicknesses, when required (High V, similar thicknesses between all layers, etc.)

□ Minimum pitch of BGA

- □ Calculate min line/spaces to route between pads
- □ Calculate min drill/pad diameters for fan-out that can be fabricated at Final Fab Site

Drill structures

- □ Through-hole (standard aspect ratio </= 10: 1 for >8mil drills in Asia)
- □ Via-in-pad-plated-over (VIPPO, non-conductive filled via with Cu cap plating)
- □ Laser uvias (aspect ratio <0.8: 1)
 - □ off-set or stacked (buried stacked uvias should be solid Cu-filled)
 - Skip blind vias
- □ Back-drills (specify Starting and Do-Not-Cut layers)

□ Special requirements (Cavities, < +/-5mil tol Routing, Solder mask-defined pads, Castellations, Edge-plating, etc.)

Red highlights indicate capabilities that are affected by plating surfaces.

Altium

Checklist of Information Fabricator Should Verify to You

□ Stack-up with controlled impedance table, when necessary

Material

- □ Overall thickness (tol +/-10%)
- □ Number of lamination cycles (adds cost)

Layers

□

- Cu thickness per layer
- □ Signal, Plane (PWR/GND), or Mixed assignment for each layer
- Controlled impedance requirements per layer

□ Minimum lines/spaces allowed

- □ Internal layers, etch only
- Plated layers, whether internal or external

Drill structures

- □ Min drill/pads/antipads for all layers
- □ Verification of VIPPO
- Confirm Laser uvias
 - □ off-set or stacked (buried stacked uvias should be solid Cu-filled)
 - □ Skip blind vias
- □ Back-drills (confirming Starting and Do-Not-Cut layers, drill/antipad diameter)
- □ Any Special dimensional requirements affecting routing, drilling, and lamination

Layer	Calo Thickness	Primary Staok	Description	Dk / Df
Lever - 1	0.0005	1	Taiyo 4000-BN 1/4oz Sio (Std Ptt)	3.90 / 0.0330
	0.0021	106	370H	3.91 / 0.0210
Layer - 2	0.0008		1/2oz P/G	
	0.0030	0.0030	370H	4.25 / 0.0190
Layer - 3	0.0008		1/2oz Sig	
		1000		
	0.0121	2116	370H	4.34 / 0.0210
1.000	0.0040	2116	1 840	
Layer - 4	0.0012	0.01004240	102 P/G	
	0.0180	(1-1000/4-2110)	370H	0.0270.0210
Layer - 5	0.0012		1oz P/G	
	0.0121	2119	3704	4 34 / 0 0210
	0.0121	2119	3701	4.0470.0210
Layer - 6	0.0008		1/2oz Sig	
	0.0030	0.0030	370H	4.25 / 0.0190
Layer - 7	0.0008	(Marita)	1/2oz P/G	
	0.0021	106	370H	3.91 / 0.0210
Layer - 8	0.0017		1/4oz Sig (Std Pit) Telyo 4000-BN	3.90 / 0.0330
Through	Con	Juctive FIII Microvia		

Materials: Isola 370H High-Tg FR4

Impedance Type	Layer	Decign	Aotual	Pitoh	Plane	Target	Tol (ohms)	Predict
1 Stripine	L3	-	0.00575	-	12			
	-	-	-	-	L4	40	4.0	40.06
2 Stripline	LS	-	0.00375	•	12	50	5.0	50.06
	-	-	-	•	L4			
3 EC Stripline	LS	0.0040	0.0045	0.0085	12			70.00
	-	0.0040	0.0045	-	L4	80	0.0	79.80
4 EC Stripline	L3	-	0.0035	0.0140	1.2			
	-	-	0.0035	-	L4	100	10.0	100.51

Altium。

What Documentation should you provide for fabrication?

Required:

- 1. Gerber Files (RS-274-X or RS-274-D format)
 - All copper layers (including inner and outer layers)
 - Solder mask layers
 - Silkscreen/Legend layers
 - Via plugging layers (if applicable)
 - Solder paste layers (for board assembly)
 - Aperture list if apertures are not embedded in the Gerber data (i.e. not using RS-274-X)
- 2. Drill file with tool codes and X-Y coordinates for all holes (ASCII or EIA format).
- 3. IPC-D-356 netlist (used for continuity testing).
- 4. Readme File containing Engineering contact information and any special instructions.
- 5. Fab drawing
 - Board outline, dimensions, including cutouts, chamfers, radii, bevels, scores, etc.
 - Dimensions from a reference hole in the board to a corner or to two sides of the board outline.
 - A drill chart with the hole symbols on the drawing and the finished hole sizes
 - Material requirements
 - Finished board thickness and tolerance
 - Layer stack-up order
 - Controlled impedance requirements (if applicable)
 - Dimensioned array drawing if the design is to be shipped as a multiple-up array
 - Notes defining any other requirements or specifications pertinent to the design

Optional:

- 1. Valor ODB++ file preferred by PCB vendors instead of Gerber format.
- 2. Check plots in Adobe PDF form. Incoming QC uses this to check PCB.
- 3. IPC 2581 file WITH A PDF FAB DRAWING for non-2581 users to view*

Buyers FAEs Inspectors (PCB, R/I) CAM Techs PMs Customer Service Process Engineers Fab Assembly

*

Altium

Altium .

PCB Layer Stack-Up Agenda

Introduction – Why learn about PCB Stack-Ups?

PCB Layer Stack-Up Physics

Design Considerations and Communication

Tools and Processes

Altium Designer 19 Implementation Examples

Altium 。

PCB Layer Stack-Up Agenda

Introduction – Why learn about PCB Stack-Ups?

PCB Layer Stack-Up Physics

Design Considerations and Communication

Tools and Processes

Altium Designer 19 Implementation Examples

Any Questions?

