電子部品ディストリビューターのための4つの主要な認証 急速に進化する電子機器業界の風景の中で、部品ディストリビューターは、製品品質、環境責任、および運用安全を保証する上で重要な一連の認証の遵守を示すために、ますます圧力を受けています。これらの認証は、サプライチェーン管理からエンドユーザーの満足に至るまで、電子部品の配布の多くの側面に影響を与えており、信頼と評判を高める戦略的な差別化要因を提供する可能性があります。 この記事では、主要な電子部品ディストリビューターが優先している4つの認証について見ていきます。これには次のものが含まれます: AS6081 – サプライチェーン内の偽造部品の拡散を防ぐために役立ちます ANSI/ESD-S20.20-2021 – 静電気放電から敏感な電子部品を保護します ISO-9001 – 品質管理システムを強化します ISO-14001 – 環境管理への取り組みを促進します これらの認証を運用実践に統合することで、ディストリビューターは業界標準に準拠しながら 記事を読む 0:41:21 Altium Designer 24で実現する革新的で正確なすばやい配線 配線プロセスを加速させながら、どんなに要求の厳しい設計でもより良い成果を達成できます。 ビデオを見る 医療機器サプライチェーンにおける信頼性の高い調達を確保する 主な課題には、医療機器の多面的な複雑さ、複雑な組み立てプロセス、厳格な規制要件、輸入/輸出の制限、激しい競争環境、そして継続的な改善(CI)システムの必要性が含まれます(図1)。 これらの課題に対処するために、組織は研究開発への投資、強力な品質管理対策の実施、堅牢な規制チームの構築、国際貿易法の理解、製品の差別化、および運用の継続的な改善に取り組むことができます。 これらの要因に対処することで、医療機器企業は供給チェーンの信頼性を高め、患者の成果を改善することができます。世界の医療機器市場は2028年には7540億ドルに達すると予想されており、リスクは高く、業界は信頼できる調達と供給を通じてこの課題に立ち向かわなければなりません。 図1: 医療機器の調達における課題。 課題1: 医療機器の多面的な世界 医療機器は、その範囲が広く、様々な目的のために設計された機器、機械、インプラント、体外試薬、ソフトウェアなど、医療分野自体と同じくらい多様です。医療機器の多様性は 記事を読む サプライチェーンにおけるデバイスの安全性と品質の管理 プリント基板(PCB)は、現代のデバイスが機能するための基盤として機能し、電子機器において重要な役割を果たしています。スマートフォンやラップトップから、命を救う医療機器や産業制御システムに至るまで、PCBは電子の流れを制御し、社会がますます依存する機能を可能にします。 しかし、パワーと機能性が増すにつれて、安全性と品質に関する考慮事項も増加し、特にこれらの複雑なコンポーネントは、基準を満たすために電子部品供給チェーン全体を通じたよく調整された努力を必要とします。電子デバイスを概念から消費者に届けるためにこれらの基準を維持する広範な企業ネットワークは、ミッションクリティカルであり、各ステークホルダーは最終製品の安全性と品質を保証する責任があります。 PCBはこのネットワークの中核であり、PCBメーカーは、これらの不可欠なコンポーネントを入念に作成する責任を担っています。 パフォーマンスにおけるステークホルダー 成功した成果は、よく調整されたステークホルダーのチームの協力にかかっています 記事を読む 製品ライフサイクル管理(PLM)はサプライチェーン管理にどのように役立つのか? PLMは、製品の設計および開発から最終的な廃棄または処分に至るまで、製品が経る一連の変更を管理する体系的なアプローチです。一方、SCMは、顧客価値を最大化し、持続可能な競争優位を実現するために、サプライチェーン活動の積極的な管理を含みます。 PLMソフトウェア市場は2023年に470億3000万米ドルと評価され、2030年までに803億米ドルに達すると予測されており、年平均成長率(CAGR)は6.9%です。これは現在および将来において重要な産業です( Product Lifecycle Management (PLM) - Global Strategic Business Report (researchandmarkets.com)) PLMとSCMの卓越性は、複雑で規制の厳しい産業において必要です。航空宇宙および防衛産業はPLMの最大の市場シェア(23%)を占め、これは予想されることです。北米はPLM市場の最大の地域で、2020年に市場の33%を占めました。APAC地域は 記事を読む ATmega328Pの基本: Arduinoなしで始める方法 Arduino Unoボードをかなりの期間使用してきましたが、多くの記事の例としても使用しています。古いUnoボードに使用されている元のチップであるATmega328Pを、完全に独立して動作させるにはどうすればよいか、いつも疑問に思っていました。Arduinoがそのブートローダー、使いやすいGUIソフトウェア、C++の抽象化を通じてアクセスしやすくしているので、なぜこの試みをしたいのか不思議に思うかもしれません。しかし、時には、他人が行ったことを評価するためには、自分でやってみることが重要です。このプロジェクトは、Arduinoの開発者がどれほど多くの作業を行い、そのフレンドリーな製品で世界を変えたかを本当に示してくれました。 この記事では、外部電源と Atmel-ICEプログラマのみを使用して、チップを完全に独立して起動する方法を説明します。オンボードのシリアルインターフェースを介してチップと通信する方法と、LEDを1つまたは2つ点滅させる方法をデモンストレーションします。 環境設定 記事を読む DevOpsを組み込みシステムで使い始める方法:ATmega328Pを使用して DevOpsとアジャイル手法は、コラボレーション、自動化、および継続的な改善を重視することでソフトウェア開発を変革しました。DevOpsの原則を私の設計とプロジェクトに適用することは、効率と信頼性を高めるゲームチェンジャーとなりました。この記事では、 既存の組み込みシステムプロジェクトの継続的インテグレーション(CI)ワークフローを設定する方法を説明します。このプロジェクトは ATmega328Pマイクロコントローラを使用しています。この記事の終わりまでに、これらの実践が開発プロセスを合理化し、より高品質な製品を提供する方法を見ることができます。 組み込みシステムのためのDevOpsとアジャイルを理解する DevOpsは、ソフトウェア開発(Dev)とIT運用(Ops)を連続的な流れに統合する、ソフトウェア界で人気のある一連の実践です。ソフトウェア界では、ソフトウェアを開発し、「壁を越えて」運用担当者に顧客への展開を任せるのが一般的でした。DevOpsは、その壁を取り除くだけでなく 記事を読む オープンソースプロジェクト概要:ラップトップとRaspberry Pi CM4モジュール このエピソードのAltium OnTrackポッドキャストでは、ホストのZach PetersonがOpen Visions TechnologyのLukas Henkelと座談し、オープンソースのノートパソコンとRaspberry Pi CM4モジュールの代替品となる2つの画期的なオープンソースプロジェクトを探求します。 オープンソースハードウェアの最新進歩を発見し、これらの革新的なプロジェクトがDIYコンピューティングの限界をどのように押し広げているかを学びましょう。 エピソードを聴く: エピソードを見る: エピソードのハイライト: ウェブカメラデザイン:ノートパソコン用のオープンソースウェブカメラを設計する際の課題と革新。 ノートパソコンデザインの課題:オープンソースノートパソコンの開発中に直面した主要な障害。 ノートパソコンプロジェクトから学んだ教訓:オープンソースノートパソコンプロジェクトに取り組む中で得た洞察と教訓。 この種のプロジェクトを始めるためのアドバイス 記事を読む 0:41:30 アップグレードの価値: Altium Designerの最近のバージョンがもたらす時間的、および経済的な利点 PCBレイアウトの複製、自動チューニング、シミュレーションなどの機能を通じて、設計プロセスをより効率的、かつ効果的にする方法をご確認ください。 ビデオを見る 組み込みシステムのアーキテクチャ:製品に複数のPCBがある場合 組み込みシステムは、今日の技術主導の世界で至る所に存在します。インターネットに接続されたシェーバーであれ、複雑な自動車であれ、私たちが今日使用しているほとんどの電子デバイスの中心には組み込みデバイスがあります。1つまたは複数のマイクロプロセッサで構成される組み込みシステムは、複雑さをソフトウェアによって処理させることで、電子機器を簡素化することができます。組み込みデバイスが大きく複雑になるにつれて、プリント回路基板(PCB)も同様に大きく複雑になります。しばしばこれらのデバイスは複数の基板に成長し、当初意図されたよりも大きなアセンブリになることがあります。 この記事では、複数のPCBで構成される組み込みシステムのアーキテクチャのトレードオフと考慮事項について見ていきます。複数のPCBシステムに関連する利点、設計上の考慮事項、および課題について説明します。 なぜ複数のPCBを使用するのか? デバイスを単一のPCBに保つことが理想的な選択肢です(単純さとコストの両方のために)、しかし 記事を読む SPICEシミュレーションモジュール:設計の課題で時間とお金を節約するために、シミュレーションで自動測定を使用する方法 電子回路のシミュレーションは、設計成功の鍵となります。SPICE回路シミュレータは、設計分析を加速するために使用できます。Altium Designerは、効率的かつ正確な方法で設計をシミュレートするのに役立ち、回路の機能運用について深い洞察を提供します。 Altium Designerでの主要な分析の一つが、回路の時間領域シミュレーションである過渡解析です。過渡解析の例を図1に示します。カーソルのペアを使用して、信号値の周波数を決定できますが、信号量は 「Measurements」というツールを用いて簡単に自動化できます。図1に示された回路の測定設定の例を図2に示します。 図1 - シンプルな電圧モードのバックコンバータ 図2 - バックコンバータの測定設定 Altium DesignerのSPICEシミュレータにおける自動測定 Altium DesignerのSPICEシミュレータには、さまざまな自動測定が利用可能です。その一部を図3に示します。これらの信号量は 記事を読む マルチボード設計ツールがあなたの電子プロジェクトを変革する方法 マルチボードPCB設計ツールは、エレクトロニクスエンジニアに新しい機能を提供し、ユニークな製品設計を可能にします。 記事を読む エレクトロニクス文化を再びクールにする OnTrack Podcastへようこそ!このエピソードでは、Circuit Pulse Showの特別ゲスト、Inga Woods-WaightとJoel Higginsと共に、鮮やかなエレクトロニクス文化に深く潜り込みます。彼らがどのようにしてエレクトロニクス文化と技術を楽しく、アクセスしやすくし、若い視聴者を引き込み、エレクトロニクス業界の教育コンテンツを革命的にしているかを発見してください。エレクトロニクス設計に情熱を持ち、業界のトレンドに最新の情報を得たい方は、このエピソードは必見です! エピソードを聴く: エピソードを視聴する: エピソードのハイライト: • PCB設計の洞察とヒント • エレクトロニクスコミュニティのための魅力的なコンテンツ • 教育用エレクトロニクスビデオの台頭 • IngaとJoelの旅と成功の物語 さらに多くのリソース: LinkedInで Inga Woods-Waightをフォローする Octopartの YouTubeチャンネル Circuit 記事を読む 電子部品およびデバイスのための5つの新興電源 デジタル時代が進むにつれて、私たちの日常生活に不可欠な多くの電子デバイスを動かすためのより持続可能で効率的な電源への需要はかつてないほど高まっています。長年にわたり、電子部品やデバイスはリチウムイオン電池やアルカリ電池に依存してきました。しかし、これらの電池には、電池廃棄に伴う環境問題、リチウム資源の有限性、エネルギー集約型の生産プロセスなど、重大な制限があります。これらの要因が、技術業界により持続可能で効率的な代替品を求める動きを促しています。 この記事では、電子部品やデバイスのための新興の電源技術5つを検討し、私たちが電子機器を動かす方法を再定義することを約束する革新を強調しています。従来のエネルギー源から革新的な新しい代替品への移行を検討することで、技術と持続可能性が融合する未来の一端を垣間見ることができます。 運動エネルギーの収穫 腕を動かすだけでスマートウォッチを動かしたり、歩くだけで電話を充電したりすることを想像してみてください。運動エネルギーの収穫は ビデオを見る 圧電エネルギーハーベスティング深掘り エネルギー効率を最大化することが重要な時代に、圧電エネルギー収穫は魅力的な解決策として浮上しています。これは、周囲の機械的エネルギーを電気エネルギーに変換する方法を提供します。この技術は、特定の材料が機械的ストレスを受けると電気を生成する圧電効果に根ざしており、電子設計者やエンジニアにとって興味深い機会を提示しています。この記事では、圧電エネルギー収穫のさまざまな技術を見ていき、これらの方法を電子設計に統合してエネルギーの自立性と持続可能性を高める方法を探ります。 圧電材料の理解 圧電材料には、石英、チタン酸ジルコン鉛(PZT)、フッ化ポリビニリデン(PVDF)などがあり、機械的ストレスに応じて電気荷を発生させる独特の性質を持ち、圧電エネルギー収穫技術にとって重要です。天然の圧電材料である石英は安定性と高い電圧係数を提供し、PZTのような合成源は電子部品の特注アプリケーションに不可欠な形状とサイズの柔軟性を提供します。 材料科学の進歩により 記事を読む Generative AIを使用して組み込みコードを書き込み、実行する ハードウェアと会話するカスタムGPTアクションの構築方法と AIラボアシスタントの構築で、Generative AIを使用してハードウェアを制御する方法を学びました。ChatGPT内でカスタムGPTアクションを利用することで、ChatGPTにラズベリーパイからLEDを点滅させるだけでなく、実験室の機器を制御しデータを取得する能力を与えることができました。これは、人工知能をラボアシスタントとして使用し、機器から取得したデータを処理することができることを意味します。この記事では、Generative AIによってコードを書くだけでなく、組み込みターゲット上で実行し、その過程でフィードバックを受け取ることによって、さらに一歩進んでいます。 背景 Generative AIを使用してコードを書くことは、組み込みシステムでさえ、新しいことではありません。既にコードを一から完全に書くか、提案するだけの多くのツールがあります。ChatGPT、Gemini 記事を読む Introducing the Leadership Circuit Introducing Octopart's Leadership Circuit Series At Octopart, we understand that the electronic industry is constantly evolving, with new trends, challenges, and opportunities emerging at a rapid pace. That's why we're excited to announce the launch of Season 1 of our new and exciting series, the Leadership Circuit. Hosted by Dennis Reed, Sr. Analyst at Edgewater Research, the Leadership Circuit brings together electronic industry leadership 記事を読む Pagination First page « First Previous page ‹‹ ページ5 現在のページ6 ページ7 ページ8 ページ9 ページ10 Next page ›› Last page Last » 他のコンテンツを表示する