Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Arduino Portenta H7 Brings Dev Boards to Production Grade

    Zachariah Peterson
    |  April 7, 2020
    Arduino Portenta H7 Brings Dev Boards to Production Grade

    When I hear the name “Arduino,” I don’t usually think of production-grade hardware. I’m not talking down to the folks at Arduino, they’ve done an excellent job at invading the educational and proof-of-concept development niches, to the extent that other hardware platforms simply haven’t been able to catch up. Arduino boards are an excellent choice for low volume functional prototyping and embedded software development. But what about production-grade applications in demanding environments?

    The new Arduino Portenta H7 platform is targeting embedded applications in industrial environments. Compared to the MKR and Nano platforms, this board may finally penetrate deeper into production-grade applications, rather than being relegated to being a development and prototyping product. Let’s take a look at the capabilities of this new product and its viability for different embedded applications.

    Arduino Portenta H7 Capabilities

    The Arduino Portenta H7 is built around an STM32H747 dual-core processor (Cortex-M7 core at 480 MHz and a Cortex-M4 core at 200 MHz). Security and privacy in IoT systems is a contemporary concern, and this board includes an ECC608 (Microchip) or SE050C2 (NXP) IC for cryptography functions. The overall hardware capabilities of the Portenta board include:

    • Arduino MKR headers with UART1, 6x Analog input pins, GPIO, PWM, SPI, I2C, Reset, 5V, 3.3V, and GND
    • 2 MB onboard SDRAM, 16 MB NOR Flash onboard storage (Upgradeable up to 128 MB)
    • 10/100 Ethernet PHY layer
    • 2.4 GHz WiFi (802.11b/g/n, up to 65 Mbps) and Bluetooth 5.1 (BR/EDR/LE) with ceramic antenna
    • USB-C connector with DisplayPort

    You can use the module itself as a controller for a variety of edge/IoT applications. This board runs native Arm Mbed OS applications, MicroPython or JavaScript programs with an interpreter, or ML/AI applications with TensorFlow Lite. You can also use the two cores on STM32H7 microcontroller by running standard Arduino code on the Cortex-M4 core, and computationally intensive MicroPython code can be interpreted on the Cortex-M7 core.

    Arduino Portenta H7 and its Carrier Board

    The Arduino Portenta H7 platform has followed the lead of other SBC/MCU boards and has gone in the direction of modular design. Other Arduino platforms (e.g., Mega, Nano) could be brought onto a baseboard or expanded with shield boards, but developers were forced to design these on their own or purchase them from a third-party vendor.

    As part of the Portenta ecosystem, the folks at Arduino created a carrier board with access to plenty of peripherals for these modules. This brings the Portenta into a modular ecosystem for carrier board design and makes it easy to design unique carrier boards for this platform (more on this below). The Portenta connects to its carrier through two 80-pin board-to-board connectors on the bottom of the module.

    Carrier board for the Arduino Portenta H7
    Arduino Portenta H7 carrier board

    The carrier board holds the Portenta module a bit lifted from the base, rather than connecting via an edge connector. This allows the pins on the Portenta to be accessed directly, while also expanding the range of devices that can be connected to a Portenta module. The carrier board offers plenty of connectivity options to be excited about:

    • Expandable storage with a MicroSD card slot
    • 8-bit LVTTL/2-lane MIPI CSI camera connector
    • 3 analog audio jacks
    • RJ45 Gigabit Ethernet connector (backwards compatible with the 10/100 PHY)
    • NBIoT/CatM1/GPRS Modem and SIM card slot for cellular access
    • Murata CMWX1ZZABZ LoRa module
    • 2x antenna connectors
    • 2 USB ports
    • RJ-9 connector for CAN bus
    • RJ-11 connector for RS232/422/485
    • 40-pin GPIO connector
    • mPCIe connector for external modules (I2C and USB)

    All these options make the carrier board an excellent choice for prototyping a new product that needs to interface with a camera module, PCIe module, a LAN, wireless network, another device/computer via USB, or other external hardware. You can take advantage of the carrier board to ensure interfacing/functionality as you focus on developing embedded software. However, a real application may not need all of these additional connections, and you may want to consider designing your own carrier board that is tailored to your application.

    Carrier Board Design for the Arduino Portenta H7

    If you’re not a fan of the current carrier board for the Portenta, you can design your own carrier board to expand the capabilities and add important peripherals. The current carrier board is highly general purpose, making it a great option for prototyping around some peripheral equipment. However, it is a bulky board, and you might not need all the peripherals on the carrier board for your particular application. Instead of settling, you could design a custom carrier board that is tailored to your application and required form factor.

    If you’re familiar with standard CoM interfaces (I2C/I2S, UART, GPIO, etc.), then you’re in a prime position to create a custom carrier board for a Portenta module. This is made much easier when the standard routing requirements are defined as design rules in your routing tools. You can access some more tips and tools for working with Arduino platforms here.

    With the advanced PCB design and layout features in Altium Designer®, you can design a custom carrier board around the Arduino Portenta H7 that meets your particular application needs. Access to the Portenta through Altium365 will soon be available, which cuts down development time and helps designers get to market quickly with a unique production-grade solution.

    Now you can download a free trial of Altium Designer and learn more about the industry’s best layout, simulation, and production planning tools. Talk to an Altium expert today to learn more.

    About Author

    About Author

    Zachariah Peterson has an extensive technical background in academia and industry. Prior to working in the PCB industry, he taught at Portland State University. He conducted his Physics M.S. research on chemisorptive gas sensors and his Applied Physics Ph.D. research on random laser theory and stability.His background in scientific research spans topics in nanoparticle lasers, electronic and optoelectronic semiconductor devices, environmental systems, and financial analytics. His work has been published in several peer-reviewed journals and conference proceedings, and he has written hundreds of technical blogs on PCB design for a number of companies. Zachariah works with other companies in the PCB industry providing design and research services. He is a member of IEEE Photonics Society and the American Physical Society.

    most recent articles

    Back to Home