Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Electric Vehicles: PCB Designers Mitigate Heat Using Glass-Reinforced PTFE

    April 12, 2017
     
    In the demanding world of electric vehicles, PCB’s must provide power conditioning, voltage conversion, and battery management in addition to their usual roles in the automotive context. Unfortunately, these same PCB’s must cope with stringent thermal requirements without heat sinks or fans. PCB designers, however, have found a lasting solution. Board substrate materials with high thermal performance allow PCB’s to avoid or minimize their use of heat sinks, heat spreaders, and other conventional strategies. Two popular choices, Ceramic and PTFE, have become the go-to choices for EV PCB designers.

    Ten years ago I began my first job designing gaming motherboards. I had a lot to learn, particularly in the area of thermal performance. Before long, it became second nature to add heat sinks, cooling fans, and other equipment that I knew my PCB’s would need to thrive.  Just when I thought I had heat mitigation down to an art, a friend told me about how electric vehicles (EV) are taking heat mitigation to the next level. Power regulators, electric motors, and engine control units are all EV components that put out large heat totals. Unlike gaming motherboards, the conventional heat mitigation methods, which require bulky SMT components and fans, are not an option for these small boards. Talking with my friend left me intrigued, so I asked him how the designers on his team deal with it all. If you can’t use heat sinks and fans, then what can you use?

    Closeup of a SMT heat sink on a PCB
    Conventional heat sinks like this one just can’t fit in the tight spaces in EV projects.

    The Ceramic PCB: The Best Thermal Performance Money Can Buy

    For EV hardware designers, it means taking a whole new perspective. The PCB itself needs to play into the thermal equation. Specifically, the substrate of the PCB must be a strongly heat conducting material. Boards that effectively wick away heat from components can get away without fans and use much smaller heat sinks. Bearing this in mind, the designer will probably discover ceramic PCB’s as their best option. Compared to standard “FR-4” resin boards, ceramics are up to 170 times more thermally conductive and can handle operating temperatures up to 350C. Not only that, they are significantly stronger and more dielectric than resin boards. For EV designers, they’ve become the substrate of choice for power converter boards, which is a crucial component in EV’s. These boards are designed to convert the DC voltage from the vehicle’s batteries into the high-frequency AC voltage that the drive motors use. This challenging application generates substantial heat and will fry boards that can’t hold up in the long-term. They’re also used in charging circuits and voltage regulators for low-voltage equipment, applications with similar needs to power converters. Not surprisingly, ceramic boards are a standout choice for the EV PCB designer.

    CPU
    Before seeing use in EV’s, ceramic substrates were a favorite for computer processors and IC’s, like the one shown.

    Best of Both Worlds: The Glass-Reinforced PTFE PCB

    Now ceramic PCB’s sound great, right? Well, that’s not the whole story. While they are strong performers from a thermal viewpoint, they are terrible at keeping costs down. Ceramic PCB’s are manufactured using an advanced punching and machining process. In contrast, conventional boards use a layered silkscreening process that scales well and is very cost-effective. As my designer friend told me, he’d love to use ceramics for everything in his work - “it would certainly make my job easier,” he said with a laugh. Unfortunately, it’s just not feasible, which is why ceramics are only used for the most critical EV components. This brings us to glass-reinforced Polytetrafluorethylene (PTFE) boards, which EV manufacturers have been gravitating to for safety, control, and lighting PCB’s. So-called “thermal enhanced” PTFE boards are a particular favorite for LED headlight units, which output densely concentrated heat but don’t warrant a ceramic board. Like resin boards, the use a cheaper, layered manufacturing process but have much better thermal stability. In fact, with operating temperatures up to 200C, these boards are able to cope with some pretty demanding applications. It’s no wonder that PTFE is the same material used on nonstick frying pans for the past half century.

    Teflon Frying Pan
    In addition to high heat PCB’s PTFE provides the non-stick coating for most everyday frying pans.

    These are two popular options for the EV PCB designer, but they’re not the only two. Thanks to emerging “hybrid” substrate designs, it’s likely we’ll be seeing many more options in the near future. When considering a possible board type, my designer friend stressed two key values to pay attention to: the glass transition temperature and the thermal conductivity coefficient.

    The glass transition temperature: The temperature where the board substrate stops behaving like a solid and starts becoming viscous. I wouldn’t call it melting per se, but you get the idea. It’s an absolute temperature ceiling that should be compensated for with a sensible safety factor.

    The thermal conductivity coefficient: This value tells you how well the board “absorbs” and distributes heat. The higher this figure, the better the board will be at pulling heat away from IC’s and other components.

    Pay attention to these two values to be sure that your board is able to conduct the necessary amount of heat without deforming.  and your next EV project won’t suffer from underspecified PCB’s.

    Perhaps you’re not working in the exciting world of EV’s, but tracking the impacts of heat and thermal stability are essential for many PCB projects. Altium CircuitStudio® brings together outstanding PCB tools and project simulation. You’ll be able to verify the design and performance of your latest PCB creation within an intuitive and detailed environment. Moreover, the NATIVE 3D™ environment ensures that you can evaluate and modify your design with ease. Transform your next project today with .

    most recent articles

    Back to Home