Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Voltage Regulators and How to Plan Your Power Budget with PDN Analysis

    Altium Designer
    |  March 20, 2018

    Plan your power budget

    With my first buck regulator design, I had been given a power budget for the circuit block and I had to take into consideration what it was supplying and what topology I’d use. I considered efficiency to remove heat from the enclosure and I wanted to avoid using a heat sink. I also wanted a robust engine, a regulator to keep on working when the CPU, memory, and other utility circuits were exercising their might. I decided on the buck regulator topology. 

    Back in those days, the circuit simulation tools were not elegantly integrated into the schematic capture tool, so I used the resources at hand. I consulted Pressman’s Switching Power Supply Design book. I used the given design requirements such as where I was getting the power from and where I was delivering the power to, to start my analysis. 

    Choosing the right regulator is critical for your power supply design and topology. But with a more firm understanding of what software features and tools can do to work in your design, you can take a lot of stress out of the design for your power distribution network. 

    What are Voltage Regulators and How are They Used

    Voltage regulators are the engines of any electrical design. They take power from the overall energy available to your design and make it into usable energy for your circuit blocks. For many mixed signal designs, the regulators provide power to the CPU, the memory, the control ICs and various other circuits that support your design. 

    When supplying sophisticated ICs, such as a CPU, you usually need more than one voltage regulator; the CPU cores, to remain cool, are driven off low-voltage, so you need a regulator with a small rail, maybe 1.2V or lower. The IOs on your CPU may be driven from a 3.3V regulator. Other circuit blocks in your design may need 5V, and others, something else.

    There was a time when you had to wait until you had hardware before you could evaluate the overall heat generated by and around your voltage regulators. I remember seeing thermocouples directly attached to ICs, so that engineers could evaluate heat losses real time. It was imprecise on a good day, but it helped evaluate your regulator’s heat dissipation. 

    This imprecision eventually led engineers to convince their managers to purchase expensive IR cameras to observe heat densities on their working boards, and this provided a much better real-time evaluative tool.

    City in infrared coloring

    Watch heat move around your printed circuit city

    These days, simulation tools are becoming available to provide analysis capability during the drafting process, giving designers the opportunity to visualize heat densities, and their locations, prior to ever building hardware and putting it on a bench. Let’s all have a moment of silence for advancing technology. How cool would it be to sit at your computer while watching an energized board move currents around? 

    Know Your Design Needs

    How many regulators does your design require? If you are designing a mixed signal board, you may need to provide several regulators to supply your circuit blocks. You’ll want something with a low footprint profile, to minimize board real estate needs, while at the same time providing a solid stream of energy to your components. 

    Many designs these days need regulators that will supply large amounts of current with low rails. A good candidate for this type of supply is the buck regulator. A buck regulator is a simple circuit with a couple of interesting nodes to consider when placing it down onto your printed circuit board.

    Define PCB Rules for Power and Noise Performance

    While in my first design, I largely relied on my expertise, textbooks, and design requirements to draft in a slow and methodical process. When paired with ample prototyping, I was able to finalize a product that worked as efficiently as necessary. But with proper design software tools, you’ll be able to set the regulations and constraints you need to get your job done with ease. You’ll need to keep special track of the switch node, and utilizing your tools will help here. 

    Your free-wheeling diode will be banging around like it is at Friday night’s swing dance and you need to give it room to move. Most application notes for laying down a buck topology advise that you give this node a big fill rather than a trace. You’ll also need to keep sensitive signals away from this dancing node to avoid this signal from jumping into another’s space. Put the fat traces at the input and output of the buck’s circuit block to accommodate densities at those nodes.

    Switch Node Action

    Make your software work for you, don’t be afraid of the tools it has to offer.

    Simulate Using PDN to Refine Your Design

    Of course, the best part about learning from your past is being able to be so appreciative of what we have available now. With strong PCB design software, you aren’t just capable of more with your designs, but also, through optimizing your use of tools and features, you can do more work easier. 

    By using a Power Distribution Network simulator you can watch sensitive nodes during the design process, set fat traces and give the free-wheeling diode a good fill area, and then run a simulation to see if the circuit is behaving properly. Not only can you watch current densities and heat dissipation throughout, the tool will also tell how your regulators are holding up. Thankfully, Altium Designer is the powerful software that gives you what you need for your designs. 

    So, the next time you are designing the regulators for your design, use the PDN to try out your thought-experiments and to verify your analyses are correct. And if you want to grab some popcorn and hear about old power network stories, pull up a chair and call an expert at Altium.

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home