Easy, Powerful, Modern

The world’s most trusted PCB design system.

Altium Designer – PCB设计软件

电解电容寿命 Thought Leadership 影响电解电容寿命的因素有哪些? 如果你和一群设计工程师交谈,你可能会很快相信电解电容器有一种特别可疑的声誉。这种看法当然没有得到所谓的“电容器瘟疫”帮助,该瘟疫发生在新千年的最初几年。这些类型的电容器中使用的有缺陷的电解液混合物导致了设备的过早失败,而且很多时候,给它们被焊接的PCB造成了“一团糟”。由于使用某些品牌“受瘟疫影响”的电容器的商品性质高调,这成了大新闻。如果你想了解更多详情,请查看 这个维基百科链接。 然而,尽管电容器瘟疫的问题(维基百科报告说是由于一次失败的工业间谍活动尝试,导致使用了错误的电解液配方)存在,本文旨在帮助设计师理解如何从电解电容器中获得更多年的有效使用寿命。我们不会深入比较各种组件的电解电容器寿命值。底线是,一分钱一分货,不管你喜不喜欢,电解电容器在许多设计中都是必需的。 什么导致电解电容器失败? 导致电解电容器退化和失败的主要机制是随时间缓慢蒸发的电解液,当然,高温下这个问题会更严重。这导致电容量降低和有效串联电阻(ESR)增高。这是一个恶性循环,因为随着ESR的升高,由于纹波电流产生的任何自我加热效应也会增加。这可能导致显著的局部温度升高,进一步加速问题。过去,这促使一些公司实施计划性维护规则,特别是在系统用于关键应用时,每隔几年就用合适的替代组件更换电解电容器。 电容器规格 你经常会看到一个电解电容器会有一个寿命数字,比如5000小时。我们将使用 TDK(之前的EPCOS)数据表作为如何解释这些信息的例子。这个数据表是针对 B41888电容器的,这是我在预期寿命较长的相当关键的产品中使用过的一个。数据表摘要如下: 我已经用红色标出了相关区域。它告诉你一个直径为8毫米的电容器可以提供5000小时的有效寿命。这只相当于208天的寿命,乍一看,这是一个非常低的值。然而,这个数字是基于105°C的工作温度。如果工作温度低10°C,在95°C时,寿命将翻倍。每下降10°C,寿命就会翻倍。所以,如果某个特定电路中的电容器的运行环境温度保持在55°C以下,你可以使用以下公式来计算实际寿命: 实际有效寿命 = [在105°C下的寿命] ∙2x 其中“x”是(105°C - T ACTUAL)除以10。在55°C的温度下,“x”= 5,因此有用的寿命从105°C下的5000小时延长到55°C下的32 x