Easy, Powerful, Modern

The world’s most trusted PCB design system.

Altium Designer – PCB设计软件

PDN阻抗分析和建模:从原理图到PCB布局 PDN阻抗分析和建模:从原理图到PCB布局 我们在这里讲了很多关于信号完整性的内容,但信号完整性其实与电源完整性密切相关。这不仅仅是减少电源/调压器的开关噪声或纹波的问题。在某些设计中,PCB中的PDN阻抗会对您的设计造成不利影响,从而导致电路板中的元件由于电源问题而无法按照设计工作。 这时,了解一些用于PDN阻抗分析的基本模型将起到一定的帮助作用。如果您可以为PDN阻抗建立一些合理准确的模型,则您可以为元件设计适当的去耦网络,以将PDN的阻抗保持在可接受的范围内。 为什么要进行PDN阻抗分析? 高速和高频PCB设计人员通过阅读本文即可知道答案。但是,随着技术要求的不断提高,无论是否情愿,我们所有人都将成为高速和高频PCB设计人员,因此了解PDN阻抗如何影响PCB中信号的行为就变得非常重要。不幸的是,我们在信息整合方面做得并不够好。因此,我很高兴在这里为大家做一个总结。 简而言之,您的PDN阻抗会影响电路的以下几个方面: 电源总线噪声。 由于PCB中的瞬态电流而产生的电压纹波。请注意,由于PDN阻抗是频率的函数,因此开关引起的电压纹波也将是频率的函数。请注意,无论调压器输出中的噪声水平如何,都会产生这些电压瞬变。 电源总线噪声中的阻尼。 在某些情况下,电源总线上的任何纹波都可能显示为振铃(即,阻尼不足的瞬态振荡)。如果去耦电容器的尺寸不正确,或者在去耦网络中没有考虑到去耦电容器的自谐振频率,就会出现这个问题。 所需的去耦水平。 过去,由于电容器自谐振频率(~100 MHz)相对较低,因此使用TTL和更快的逻辑系列并不足以确保PCB中实现去耦。因此,设计人员使用层间电容来提供足够的电容,以确保实现去耦。市场上已推出更新款的具有GHz自谐振频率的电容器,它们足以在高速/高频PCB中实现去耦。 回流路径。 您的回流电流将遵循最小电阻路径(针对直流电流)或最小电抗路径(针对交流电流)。接地网络中的阻抗会在空间中变化,并且部分取决于信号轨迹与PDN之间的寄生耦合。 电阻压降。 由于构成PDN的导体的固有电阻,供电和回流电流的直流电部分将会遭受一定的损耗。下图显示了PDN分析结果示例,说明了特定信号轨迹以下的回流电流和同一接地层中的直流电流。 定时抖动。 由于信号的传播时间有限,因此从去耦电容器和调压器产生的电流将需要一些时间才能到达开关元件。当这些信号到达元件时,它们会干扰输出信号,从而有效地在信号的上升时间中产生一些抖动。通常,由于电源轨噪声引起的定时抖动会随着噪声强度以及调压器与元件之间的长度而增加。在长电源轨上,这可能会导致定时抖动达到几百纳秒,从而使数据去同步并提高误码率。 注意此PDN分析仪输出中的信号轨迹 PDN阻抗分析的简化模型