Skip to main content
Mobile menu
PCB设计
Altium Designer
最广泛使用的PCB设计解决方案
Altium NEXUS
敏捷的团队PCB设计
元器件 & 数据
Altium Concord Pro
元器件库管理的完整解决方案
Octopart
大量简单易用的元器件数据库
Altium年度客户服务计划
资源 & 支持中心
了解产品
免费试用
下载
扩展应用
联系我们
关注微信
扫描二维码
关注Altium微信平台
资源 & 支持中心
博客
支持中心
文档
培训和活动
线上研讨会
Altium社区
论坛
Bug提交
创意
Altium认证
举报盗版
Search Open
高速设计
Main Chinese menu
首页
网络研讨会
资源中心
指南书
按话题热度
Altium Designer的
ECAD/MCAD
PCB设计
供应链
信号完整性
刚挠
印刷电路板布线
原理图捕获
团队协作
工程新闻
模拟/分析
电源完整性
统一设计
设计制造性设计(DFM)
设计数据管理
高速设计
高速设计
甲PCB设计是当它包括具有快速边沿,即开关状态如此之快,在转换完成前的信号来沿着路线行进并到达目标引脚器件器件高速设计。在这种情况下,信号可以被反射回源销,降解或破坏原始信号数据。具有快速边缘的信号也可以从辐射路径和耦合到邻近的路线,或辐射进一步,成为电磁干扰(EMI),从而导致产品不能满足强制排放标准。浏览我们的资源库,详细了解嵌入印刷电路板的高SPED PCB设计,设计传输线。
安卓机顶盒BOX案例
电子发展日新月异,更新换代也很快,这次课题主讲消费类产品。消费类的产品很多,而且越高端要求也越高,叠层有4层、6层、8层等。对于我们AD用户来说,是否会觉得很难设计呢?就算可以设计,我们有没有快速而且稳定的方法呢,包括等长处理、高速模块处理、EMC等方法。
Read Article
DDR存储器布局布线设计思路解析
详解DDR高速存储器模块的布局布线的设计思路。从原理图分析到PCB布局布线,从一片到两片、四片DDR;从DDR一代到DDR四代,全面地解析处理DDR相关的设计思路。
Read Article
PDN分析及应用系列一——安装,许可及设置
由于电子产品的低功耗要求,PCB板上的电源分布网络设计已经成为当下最热门的话题之一。与高速设计一样,PDN 设计也已成为PCB 设计中的一项关键技术。 大约二十年前,微处理器工作在数MHz的时钟频率下,5V电源供应使得百毫伏量级的噪声也不会引起逻辑错误。只需要保证每个电源管脚安放一个去耦电容就可以满足芯片对电源的需求,电磁辐射也不是设计人员需要重点考虑的问题,电子系统的电源设计没有任何挑战。但随着电子元件时钟频率的不断提升以及更多功能集成于芯片内部,芯片的功耗在不断增加,同时芯片制造工艺的进步使得芯片供电电压在不断下降,而且,芯片集成度的增加导致同一个芯片需要更多的电源种类,各种电源域增加了电源系统的设计难度。 如今设计面临的挑战 以前... ICs 通常只有一个供电电压 每个供电电压都有专用的完整的铜皮层,PCB板都比较大,可以有更多的覆铜面积 供电电压比较高,可以有更高的容差 器件引脚数少 现在... 新的器件都有多种供电电压 电源层由多种电源共享,加上分割使得覆铜形状非常复杂
Read Article
Altium Designer 19 版本功能对比
Download PDF
1:20:57
DDR存储器布局布线设计思路解析
观看视频
1:4:17
举重若轻,玩转Altium Designer 18
观看视频
48:22
Altium Designer 19 先睹为快
观看视频
1:49:34
安卓机顶盒BOX案例
观看视频
2:49
如何在设计中设置和使用微孔
观看视频
2:30
如何设置盲孔和埋孔
了解如何在设计中定义、设置和使用盲孔和埋孔。
观看视频
52
如何为阻抗计算定义参考平面
了解如何为设计的阻抗计算定义参考平面。
观看视频
8:09
如何计算单根传输线和差分传输线的阻抗
了解如何使用 Altium Designer 的层堆栈管理器,对设计中每层的单面和不同面的阻抗要求进行配置、定义和使用。
观看视频
1:04
支持印刷电子技术
Altium Designer 对印刷电子叠层设计的支持为设计人员提供了具有明显优势的新选择!
观看视频
1:06
支持HDI设计
通过支持微孔加速您的HDI设计
观看视频
32
差分对走线修复
无论您是走线到焊盘还是从焊盘开始走线,或只是从电路板上的障碍物周围经过,Altium Designer 都能够确保差分对走线耦合在一起。
观看视频
42
如何在Draftsman中为具有阻抗控制的制造文件插入传输线表
了解如何在 Draftsman 中为具有阻抗控制的制造文件插入传输线表
观看视频
差分对阻抗:使用计算器设计PCB
我在高中时上过各种各样的计算机课程,并且始终有一个疑问,那就是为什么以太网电缆中的导体要相互缠绕在一起?我不知道原来这是一种简单的设计方法,可以确保信号在不互相干扰的情况下抵达目的地。有时,复杂问题的最佳解决方案实际上也是最简单的解决方案。 差分对布线不只局限于以太网线缆;它也是高速PCB中的关键布线和设计技术之一。电路板设计人员通常从单端走线而不是差分对走线的角度来讨论传输线阻抗,但是清楚地理解和计算差分对阻抗对于确保整个电路板的受控阻抗至关重要。电抗、电感和阻抗等因素通常可以归结为一个简单的解决方案。 差分阻抗何时起到重要作用? 高速/高频PCB中的阻抗失配会严重破坏信号。当单端走线中存在明显的阻抗失配时,会出现诸如由于产生信号共振而导致的振铃之类的问题。这同样适用于不同的对;但与具有高输入阻抗的负载相连的端接对是个例外(例如,LVDS)。就像单端阻抗一样,当走线表现为差分传输线时,差分对阻抗具有重要意义,具体取决于给定走线上的传输延迟。 在信号上升时间非常短的情况下
Read Article