Massive MIMO Benefits for 5G Cellular Infrastructure

Created: August 24, 2017
Updated: August 16, 2021

Big Tex
Editorial credit: PureRadiancePhoto /

Even though I ended up here in southern California, I was originally born in Texas. We have a saying that you probably have heard, “everything’s bigger in Texas.” That turned out to be true for me, as I’m the tallest member of my extended family. I’d like to think that the minds behind massive multiple input multiple output (MIMO) antenna arrays were also born in Texas. MIMO has been around for years, but massive MIMO is just starting to gain traction, especially in the 5G arena. 5G promises to bring us blazing speeds and low latency, but in order to do that, it needs to leverage the massive MIMO advantages. These benefits include things like excellent spectral efficiency and great user tracking. With this technology, 5G MIMO will become a reality.

What is Massive MIMO Technology?

A lot of people are intimidated when they meet “Texas” head-on. For example, when you walk into the Texas state fair and see Big Tex welcoming you in. In the same way, massive MIMO can be a bit much at first. So let’s start with the normal advantages of MIMO and work our way up to the “massive” scale.

MIMO stands for multiple inputs multiple outputs. This means that a receiver antenna array can receive data from and send data to multiple devices at the same time via the transmitter. In order to achieve this, each array uses multiple antennas. With a massive MIMO antenna and complex signal processing, cell towers can take advantage of various propagation modes to send more data with better reliability.

A Massive MIMO system is the same concept, just with multiple antennas. MIMO systems may use around 4 transmitters, whereas massive MIMO will use more than 100 antennas. The description is that massive MIMO will use an excessive number of antennas so that transmitters outnumber users. MIMO antenna allows massive MIMO systems to gain even more advantages than current MIMO.

 Antenna Array
These antennas will become a thing of the past.

Benefits of Massive MIMO

5G Massive MIMO systems are extremely complex, and implementing them will be harder than riding a bronco in the rodeo. However, the assets that massive MIMO has to offer are worth getting thrown off the horse a few times.

  • Spectral Efficiency - This is becoming a very important topic as more and more of the electromagnetic spectrum is being used for various communication protocols. Governments have set aside a wide band of frequencies for 5G MIMO, but those spectrums aren’t endless. 5G Massive MIMO is able to leverage its antenna array to focus beams down to individual users. This allows it to achieve spectral efficiencies 10 times better than that of massive MIMO systems used for 4Gat.

  • Energy Efficiency - Texas won’t be producing oil forever, so it’s time to start thinking about energy efficiency for electronic systems as well. In massive MIMO antennas can be used in conjunction to increase the gain of transmitted signals. This means they radiate less power when transmitting data, making for a more energy-efficient system.

  • User Tracking - The same thing that makes massive MIMO energy efficient allows it to accurately track individual users. As the antenna beams are focused to produce high gain, their beam widths decrease. Thus, the tower has to track each user with a narrow signal beam. This tracking will give users a better and more reliable connection than the wide-area signals that have been used up to now.

City with wireless network
5G will need massive MIMO to efficiently connect billions of devices.

Application to 5G

Massive MIMO sounds kind of cool, like a ten-gallon hat. However, I haven’t bought a ten-gallon hat, so why would I buy into massive MIMO? The cellular world is really starting to dig into massive MIMO because 5G needs it. There is a limited amount of spectrum available for 5G, so spectral efficiency is very important. 5G networks will also need to connect to billions of devices. For that to happen they’ll need massive MIMO’s pinpoint accuracy and energy efficiency.

The US government recently opened up a new part of the high-frequency spectrum for 5G technology. That will be very helpful in the future, but for the short-term transition period, frequencies below 6 GHz will provide a smoother transition from 4G LTE. It just so happens that massive MIMO operates best at frequencies below 6 GHz. This band is already crowded, so the extra spectral efficiency makes massive MIMO a prime candidate.

As technology advances our world is becoming more connected. The Internet of Things is taking off, self-driving cars are on the horizon, and there are already networks in place for smart cities. 5G is poised to move into all of these areas and will need to connect billions of devices. In order to do that it will need massive MIMO to be able to beam data to and from individual devices. Massive MIMO’s energy efficiency will also mean that these networks won’t require another oil boom to power them.

Massive MIMO is a technology that’s almost as exciting as a rodeo. Almost. Using huge numbers of antennas will allow cell networks to connect large numbers of users efficiently and reliably. Those attributes also happen to be what’s needed in order to implement 5G. With billions of devices coming online and a limited frequency spectrum, 5G will need massive MIMO to help us transition into the future.

The world-class PCB design and layout features in Altium Designer® are adaptable to simple DC systems and high-frequency 5G systems with massive MIMO, and everything in between. Users can take advantage of a single integrated design platform with circuit design and PCB layout features for creating manufacturable circuit boards. When you’ve finished your design, and you want to release files to your manufacturer, the Altium 365 platform makes it easy to collaborate and share your projects.

We have only scratched the surface of what’s possible with Altium Designer on Altium 365. Start your free trial of Altium Designer + Altium 365 today.

Related Resources

Back to Home