Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions

    World-Renowned Technology for Embedded Systems Development

  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience


    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Amplifier Stability at High Frequencies and Stray Capacitance

    Zachariah Peterson
    |  April 28, 2020
    Will these amplifiers be stable during operation? Here’s what you should know about amplifier stability in your PCB.

    Amplifiers are one of those critical components that make modern life possible. From wireless communication to power electronics, amplifiers need to run stably and predictably for these products to work properly. Stability analysis is one of my favorite topics in physics and engineering, and it always tends to crop up in places you would least expect. One of these places is in amplifiers.

    Any time-dependent physical system with feedback and gain has conditions under which the system will reach stable behavior. Amplifier stability extends these concepts to amplifiers, where the system output can grow to an undesired saturated state due to unintended feedback. If you use the right design and simulation tools, you can easily account for potential instability in your circuit models before you create your layout.

    How Stray Capacitance Affects RF Amplifier Stability

    The source of instability in amplifier circuits, and between the input and output ports of an amplifier IC, is parasitic capacitance. This parasitic capacitance exists between the traces connecting to an amplifier. Parasitic capacitance is critical for setting the impedance of long traces (i.e., transmission lines) at a specific value. However, parasitic capacitance also provides an unintended path for feedback between the output and input ports.

    Since this feedback path is capacitive, its impedance is lower when the input/output signal frequency is higher. These days, this is normally addressed at the chip level, but the contribution from PCB traces and pads will become more important as more RF amplifiers are running at increasingly higher frequencies. As little as a few pF of parasitic capacitance is enough to drive an amplifier to instability during operation.

    Circuit model and amplifier stability
    Circuit model with parasitic capacitance at an amplifier. The red legs show locations where current can propagate back to the non-inverting input as negative feedback.

    At the board level, the stray capacitance at the input has a bandwidth limiting effect, where the bandwidth is reduced by a factor (1 + Gain). The solution is to design traces and pads at the amplifier ports to have minimal parasitic capacitance, or to add some compensating capacitance into the feedback loop. In the high GHz regime (e.g., mmWave frequencies), the spacing between components is larger than the critical length, so you would have to use impedance controlled routing. Integration of some components into SoCs is helping to eliminate this problem, but many RF amplifiers for upcoming devices are still packaged as individual components. A prime example is newer power amplifiers for mmWave applications.

    The typical way to evaluate amplifier stability is to use the manufacturer’s evaluation board and measure any transient behavior directly. The other option is to determine the parasitic capacitance on the input and output traces connected to the amplifier and include these in a simulation. These simulations also allow you to experiment with a compensating capacitor on the amplifier’s feedback loop to counteract the parasitic capacitance.

    How to Account for Stray Capacitance in a Simulation

    Your schematic is just a 2D drawing of a perfect circuit. It does not contain any stray capacitive elements anywhere in your system and does not accurately reflect the real behavior of a PCB. That being said, the right design tools will make it easy to include parasitics in your PCB. Whether you are trying to simulate self-resonances in passives, or you want to simulate stray capacitance in other portions of your system, you’ll need to add capacitors to your schematic in strategic locations.

    To simulate stray capacitance at the input to an amplifier, simply add the right size capacitors and an AC source to your amplifier input. The capacitors are placed as shunt elements (i.e., connected to the common ground connection) on the input and the output ports of the amplifier. You’ll also need to use a verified component model for your amplifier component to get a feel for the amplifier’s behavior in the presence of parasitic capacitance. The shunt capacitive elements will model coupling between ground and the input/output traces in your board.

    You can then perform two types of simulations: transient analysis and pole-zero analysis.

    Expected Transient Analysis Results

    With transient analysis, you can see whether the signal becomes unstable and grows to saturation over time as the amplifier runs. The graph below shows some example results for a 100 GHz signal with strong instability due to large parasitic capacitance. Here, the transient voltage at the output reaches a saturation value of 2 V due to unintended strong feedback and a high-input signal level.

    Amplifier stability and transient analysis results
    Amplifier stability in a transient simulation

    Note that losses have not been considered in the above feedback example, and it is known that loss in the substrate may cause an otherwise unstable device to become stable as this compensates for gain in the unintended feedback loop.

    Expected Pole-Zero Analysis Results

    In the pole-zero analysis results, you would expect to see two poles in the simulation outputs. One would be a stable pole, representing the stable feedback loop. The eigenvalue for this pole would have a negative real part. If the circuit is unstable, another pole should appear as a second eigenvalue with positive real part; this corresponds to an unstable growing oscillation due to feedback via parasitic capacitance. You can see some example pole-zero analysis results on this page.

    There is another type of stability corresponding to a damped stable oscillation, also known as a limit cycle. This decaying transient can result in stable oscillating behavior, similar to what is seen in amplifiers used in differentiator configuration without a series resistor on the input. You can identify this behavior from pole-zero analysis results by comparing the damping constant (the real part of an eigenvalue) with the transient oscillation frequency.

    The advanced PCB design and simulation features in Altium Designer® allow you to perform a variety of analog simulations for your next RF system and amplifier circuit. You’ll have a number of tools to assess amplifier stability as part of circuit design and analysis. Once you’re ready to plan your layout, you’ll have a set of tools to capture your schematic and start creating high quality layouts.

    Now you can download a free trial of Altium Designer and learn more about the industry’s best layout, simulation, and production planning tools. Talk to an Altium expert today to learn more.

    About Author

    About Author

    Zachariah Peterson has an extensive technical background in academia and industry. He currently provides research, design, and marketing services to electronics companies. Prior to working in the PCB industry, he taught at Portland State University. He conducted his Physics M.S. research on chemisorptive gas sensors and his Applied Physics Ph.D. research on random laser theory and stability. His background in scientific research spans topics in nanoparticle lasers, electronic and optoelectronic semiconductor devices, environmental sensing and monitoring systems, and financial analytics. His work has been published in over a dozen peer-reviewed journals and conference proceedings, and he has written hundreds of technical blogs on PCB design for a number of companies. Zachariah currently works with other companies in the electronics industry providing design, research, and marketing services. He is a member of IEEE Photonics Society and the American Physical Society, and he currently serves on the INCITS Quantum Computing Technical Advisory Committee.

    most recent articles

    Back to Home