Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions

    World-Renowned Technology for Embedded Systems Development

  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience


    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    High Speed PCB Design Considerations: Bypass Capacitor Place and Route Tips

    Altium Designer
    |  October 3, 2017

    Many years ago, the majority of the board designs that I was involved with were simple digital designs. Placing and routing bypass capacitors in those designs was very easy, and often the circuitry was slow enough that ceramic capacitors were not needed. Most of the time we considered bypass capacitor placement and routing as more of an afterthought than as a primary design consideration. I remember how some of the engineers even instructed me to “sprinkle” bypass capacitors here and there as if they were little more than candied decorations on a cake. There didn’t seem to be much concern about how many to use, where they should be placed, or how they should be connected.

    Later on, as designs grew in complexity and speed, the need for designing a more refined power distribution network () on the board increased as well. Now with the signal integrity requirements of a high speed design, a precisely designed has become imperative for the best performance of the board.

    Let’s look at what some of the bypass capacitor placement requirements are in the of a high speed design, and what kind of placement and routing strategies will best help you.

    BW picture of capacitor against a schematic background
    What does this capacitor do?

    What are the bypass capacitors doing?

    The processors and other IC’s on a high speed PCB will demand sharp spikes of current that the power supply cannot deliver. Power supplies are designed to supply a level amount of power across the entire board, rather than short bursts. To solve this issue, a bypass capacitor is can be placed near the IC to supply the required current for these quick spikes. A bypass capacitor does this by storing power and then discharging it to the IC when it requires excess current. This gives the power supply time to respond. Following the spike, the bypass capacitor is recharged and ready for the next cycle.

    Bypass capacitors are also important for reducing the ground bounce that can come from digital devices that have faster switching times. Bypass capacitors also are used to filter the low-frequency noise caused by the power supply and are helpful with other signal integrity and EMI issues as well.

    How many bypass capacitors should be used?

    The amount of bypass capacitors needed for a design will depend in relation to the that they are assigned to, and how many of those are being used. Bulk capacitors in the 10uF range are usually used for each voltage drop on the board. They should be positioned where the voltage is developed or where it enters the board. On some devices, they are used in conjunction with high speed bypass capacitors.

    In general, at least one high speed bypass capacitors in the 0.1uF range should be placed by each IC. They should be placed as close as possible to their respective IC to supply current immediately. I recommend that devices with multiple power pins should have at least one bypass capacitor for each power pin. Although this will use up more board space, it can significantly help to reduce ground bounce.

    Picture of capacitors and other  placed on a PCB
    Capacitors and other at work on a PCB

    Bypass capacitor placement and routing best practices

    As I mentioned earlier, you should place your bypass capacitors as close as possible to the device that they are assigned to. This can be underneath the device on the opposite side of the board, or just off the pins that the bypass capacitor is connected to on the same side of the board.

    For circuits requiring multiple bypass capacitors placed near the power pin of a specific device, the capacitors should be placed next to that pin in ascending order of value. For instance, if both a .01uF and a 10uF capacitor are specified for a specific device, place the .01uF closest to the device with the 10uF outboard of that. In this way, the larger bulk capacitor will recharge the high-frequency capacitor that is closest to the device pin.

    When routing a bypass capacitor, you should start from the power or ground pin of the device and go directly to the capacitor pin. From there the route can continue on to a via connecting it to the power or ground plane. You should also use as short and wide traces as possible to connect the bypass capacitor, and use as many vias to connect to the power or ground plane as possible.

    The placement and routing of your bypass capacitors for the best possible power distribution network is an important part of your high speed PCB design. The tips that have been discussed here will give you a good start, and there are other resources available to you as well. PCB software, like Altium Designer®, has DC analysis tools, like their PDN Analyzer™ . These let you analyze and resolve power distribution network issues during the layout of the PCB design before you build an actual board.

    Would you like to find out more about how Altium can help with the current loop layout of your high speed PCB design?  Talk to an expert at Altium.


    Check out Altium in action...

    Automated High-Speed Signals for High-Speed Topologies

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home