Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    How PCB Software Performance Affects the Layout of Power Planes and Ground Planes

    Altium Designer
    |  October 27, 2017

    Cartoon detective with magnifying glass

    The detective on your favorite police television show will often be looking for the plain facts of the case. In PCB design tools, we have some “plane” facts to look for. One of those would be getting a better understanding of what it takes to create the power and ground planes.

    As designers, we know that planes provide power and ground to the components on our boards. We also know how to manipulate our tools in order to create those planes. But do we know why certain terminology is used, or why our tools create the planes the way they do? You may have heard the term “D-code” or even used it yourself, but do you know where it came from and what it is for?

    Hang on, we’re about to take a trip down memory lane that will give you some background history on PCB planes and how software performance has affected their creation. Our goal is to expose some of the plain facts about planes so that you can plainly see how all of these planes work together today. Are you with me? Good, then I’ve got some ‘splaining to do.

    A brief history of the plane

    There are two ways that we create power and ground planes in PCB design tools, as a positive image and as a negative image. There are lots of names associated with planes such as area fills, copper pours, and floods. For clarity though, let’s stick with positive and negative planes so we are all on the same page.

    Positive Planes: A positive plane is usually created by designating a polygon shape on the board, and the layout tool will fill it in giving you a solid plane image. There is a lot going on under-the-hood of the layout tools in order to do this. Object clearances must be calculated, pads must be connected to the plane, and proper net connectivity must be maintained to prevent shorts to other net objects. As a result, creating a positive plane is one of the more complex functions performed by your layout tools.

    Negative Planes: Because of these complexities, the first generation of CAD layout tools had difficulties creating positive planes. It was too much data for them to process. To overcome this, the negative plane was invented. A negative plane is a reverse image of a positive plane. Polygons are not filled to create metal, instead pads and other shapes are used to create clearances in the metal.

    PCB with exterior plane
    A positive plane on the exterior of a board

    Positive planes require higher performance

    The computers using those early CAD tools were nothing compared to what we have available today. At one point I was using Recal-Redac software on a PDP-11 with a 16-bit processor. Each day I would have to install my personal disk platter in the disk drive, which was about the size of a dishwasher, to access my 10 megabytes of design storage.

    Those systems simply didn’t have the performance, the memory, or the disk space to handle positive planes like we can today. Even when they had the capability for positive planes, you ran the chance of crashing the system if your plane was too large. Because of that, designers depended on negative planes. These negative planes often wouldn’t have actual contours or shapes. As well, connections to the planes would be represented by a simple “X”. The designer would then be responsible for assigning these shapes and characters to the correct photo plotter aperture position.

    Early photo plotters

    Another deterrent to creating positive planes was the photoplotter itself. Early photo plotters used a bright lamp that was focused through a physical aperture in order to create an image on the film. This film was then used by the manufacturer to fabricate the board. Since these were vector plotters instead of raster plotters, it could take a lot of time to paint the images on the film, especially if you were trying plot a positive plane.

    Another challenge with positive planes was giving the photoplotter the correct commands to work with. Early photo plotters used the original Gerber format for their input, and the apertures were assigned to “D-codes”. This was before the aperture information was embedded in the Gerber file, and as a designer you were responsible for creating an accurate aperture list. You had to know the proper D-code assignments, and then assign those codes to specific functions such as filling in positive planes. I have seen a two-hour photo plot turn into an overnight ordeal because a 10 mil D-code was specified as the aperture instead of a 100 mil D-code.

    Businessman shaking hands with a digital partner

    Today’s high performance PCB software does the hard work of creating planes for us

    Planes in high performance PCB software

    Fortunately, in today’s PCB design tools we don’t have to worry about D-code assignments, or how our design will affect the photoplotter. When we work on a positive or negative plane, all of the work to create the fills and assign the D-codes is handled automatically for us. Today’s raster laser plotters are also vastly superior and will plot large positive planes in minutes instead of overnight.

    Now you should have a better idea of what a D-code is and why it is important, as well as some historical context for negative planes. There is a lot more that can be said about this subject, but we are plain out of time.

    Altium Designer® is leveling up to 64 bit. Its high performance and powerful functionality let you choose whether you want to work with both positive and negative planes. This will help you to create the power connectivity that you need for your design.

    Would you like to find out more about how Altium can help you design your power and ground planes? Talk to an expert at Altium.

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home