Free Trials

Download a free trial to find out which Altium software best suits your needs

Altium Online Store

Buy any Altium Products with few clicks or send us your quote to contact our sales


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Altium Online Store

    Buy any Altium Products with few clicks or send us your quote to contact our sales


    Take a look at what download options are available to best suit your needs

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Injectsense Real-Time Eye Pressure Monitoring

    Clive Maxfield
    |  October 8, 2019

    Photo of Injectsense's prototype of wireless silicon sensor module next to a grain of rice and a quarter

    A prototype of Injectsense's wireless silicon sensor module next to a grain of rice and a quarter (Image source: Injectsense)

    A little over a year ago, I noticed that things sometimes got a little blurry while I was looking at my computer screen. My cousin Graham in England has macular degeneration, which has left him almost totally without sight. I have to admit that the thought this might happen to me was lurking in the back of my mind, so I set up an appointment with my ophthalmologist.

    As opposed to having my eyes dilated, I opted to have photographs taken of my retina. The ophthalmologist informed me that I was looking good on the macular degeneration front, but that he was worried about the possibility of my exhibiting the early stages of glaucoma.

    Thanks to the wonders of the internet, I now know more than I ever wanted to about glaucoma, including the fact that it's a condition that causes damage to the optic nerves in your eyes. Also, if untreated, it gets worse over time, and it's often linked to a buildup of pressure inside your eyes.

    The pressure inside your eyes is referred to as intraocular eye pressure (IOP). The term tonometry refers to a test used to measure your IOP using an instrument called a tonometer. Such an instrument determines your IOP by measuring the resistance of your corneas to indentation (the ophthalmologist then adds "fiddle factors" based on things like the thickness of your corneas).

    The ophthalmologist measured my IOP using a non-contact tonometry technique known as the air puff test, in which a small burst of air is puffed into your eye. The tonometer measures the air bouncing back from your eye to determine the IOP.

    Although today's tonometers are state-of-the-art, the data they provide is really only relevant at that particular moment in time. Unless the patient wishes to move into the ophthalmologist's office, and the ophthalmologist is amenable to taking readings throughout the day and night, there is no way to continuously track the IOP and relate it to things like environmental conditions, the patient's activity, and the way in which the glaucoma responds to various treatments, including drug regimens… or is there?

    Introducing Injectsense

    Earlier today, a new sensor-enabled digital health company called Injectsense left stealth mode to announce the completion of a successful in-vivo animal study of the first implantable wireless sensor and monitoring system designed to collect long-term IOP data.

    Smaller than a grain of rice, the 2.5 mm x 0.6 mm hermetically sealed silicon device includes a MEMS pressure sensor and an ASIC. The prototype part is powered via external electromagnetic induction, but the next-generation device will include a solid-state battery, and subsequent generations may also boast energy harvesting capabilities.

    Although is may sound a little scary, the sensor can be quickly and painlessly implanted in the eye. The self-anchoring mechanism (not shown in the above image) attaches to the outside of the eyeball and prevents the sensor from being fully subsumed into the eye, thereby facilitating easy retrieval at a later date if necessary (the long term goal is for the sensor to remain resident for years as required).

    The device interfaces well with media (blood, tissue, other fluids) without interfering with the electronics that support the sensing, computing, and transmission of data. 

    Remember that all that's being announced at this time is a successful week-long in-vivo animal study, but things look promising for human trials in the not-so-distant future. Since the sensor is so small, and in order to conserve power, data can only be wirelessly transmitted over a short distance. One potential usage scenario for the future will be to have an associated app loaded on a wearable device like an Apple Watch. The sensor can continuously gather and store data until the user brings his or her wrist close to their eye, at which time the sensor would upload its data to the watch, which would then pass the data to the cloud (possibly via another device like a smartphone or tablet).

    The goal is to have an organ-to-cloud data connection that will provide unprecedented visibility into the IOP profile of the patient over time. The insights into previously unobserved changes that may affect glaucoma progression will enable clinicians to assess the effectiveness of alternative glaucoma therapies in real-time.  

    And this is only the beginning, beyond ophthalmology, this type of sensor-enabled digital health platform is highly versatile, potentially enabling diagnostic and therapeutic applications in many different domains, from intracranial, urological, and various cardiovascular pressure parameters to neurosurgery and fluidic applications. We truly do live in exciting times.


    About Author

    About Author

    Clive "Max" Maxfield received his BSc in Control Engineering in 1980 from Sheffield Hallam University, England and began his career as a designer of central processing units (CPUs) for mainframe computers. Over the years, Max has designed everything from silicon chips to circuit boards and from brainwave amplifiers to steampunk Prognostication Engines (don't ask). He has also been at the forefront of Electronic Design Automation (EDA) for more than 30 years.

    Well-known throughout the embedded, electronics, semiconductor, and EDA industries, Max has presented papers at numerous technical conferences around the world, including North and South America, Europe, India, China, Korea, and Taiwan. He has given keynote presentations at the PCB West conference in the USA and the FPGA Forum in Norway. He's also been invited to give guest lectures at several universities in the US and at Oslo University in Norway. In 2001, Max "shared the stage" at a conference in Hawaii with former Speaker of the House, "Newt" Gingrich.

    Max is the author of a number of books, including Designus Maximus Unleashed (banned in Alabama), Bebop to the Boolean Boogie (An Unconventional Guide to Electronics), EDA: Where Electronics Begins, FPGAs: Instant Access, and How Computers Do Math.

    most recent articles

    Back to Home