Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Optimizing Power Consumption

    December 13, 2019

    Power efficiency—energy efficiency if you’re a purist—has become perhaps the highest-profile aspect of system design. This is especially true for IoT applications where a device may need to operate for years on harvested energy or a cell battery. Thus, a critical stage of design is power optimization.
     
    Typically, the first stage of power optimization is setting the power budget. For example, the system spec might state that the device has to be able to operate for a week without needing to be recharged. This spec will need to include potential use cases and their frequency of use.
     
    power tree diagram

    One of the primary challenges with optimizing power consumption at the system level is accurately assessing how much energy is actually being consumed. Processors datasheets offer current consumption numbers based on the particular power mode the processor is placed in. But complex systems have complex interactions that are difficult to predict and track. Certainly, you can compute the time your main application loop will be active. However, this computation cannot take into account the impact of interrupts, exceptions, and the myriad variations that are part of “deterministic” programmable systems.
     
    In reality, if you want to know the true power profile of a system, you need hardware.
     
    Okay. That’s a half-truth. The full truth is that if you want an accurate power profile of a system, you need production hardware.
     
    Consider profiling an Arduino- or Raspberry Pi-based system. Off-the-shelf modules make it extremely easy to build prototypes that provide all the capabilities of production hardware. However, there is a huge difference between a prototype and a production board.
     
    Prototypes are often built using off-the-shelf boards. This is a fast and efficient way to prove out an idea and then implement it. However, your final prototype will likely consist of several boards or shields clumped together. You may also have many wires soldered across the board. The connectors between boards can add a significant energy drain, depending on how much traffic runs across them. The same is true with wires.
     
    This is just one of the power issues relevant to prototype boards. Based on different use cases, the power profile of a prototype board will be skewed. So how do you tell if the design meets your power budget? More importantly, are you safe taking it to production?
     
    Now consider a production or close-to-production board. This board will have the same functionality as the prototype board. This production board will be built using tools that allow you to drag-and-drop modules into place. These tools enable you to make a production version of a prototype for a relatively low cost. Now, instead of profiling a tower of boards, you’ll be measuring a single-board design with much more efficient routing. The power profile you measure will be accurate and give you a true understanding of how well you’ve met your power budget.
     
    It may be the case that your design does not meet its power budget. Much better to discover this before you go to production. Think of that first production board as a low-cost investment in avoiding bringing a failed product to market. In addition, you can now use your understanding of how the design consumes power to target your optimization efforts to best effect.
     
    Take a look at some Gumstix customer success stories or contact Gumstix today to learn more about their products, design tools, and services. Or try out Geppetto, their customized module design tool, for yourself.  

    most recent articles

    Back to Home