Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions

    World-Renowned Technology for Embedded Systems Development

  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • A365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience


    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Passive Intermodulation in PCBs for 5G Systems

    Zachariah Peterson
    |  May 19, 2019

    Audio waveform signals graphic

    5G networks are coming. Are your PCBs ready?

    Anyone pays attention to the top bar on their phone has noticed the 4G indicator. If you use a major wireless carrier in the U.S., you’ll likely see 5G in the top bar once you buy your next smartphone. 5G systems designers, especially PCB designers, will need to work with higher frequencies, faster data rates, lower power budgets, and plenty of other performance requirements.

    Nonlinearity will also rear its ugly head in 5G systems and lead to a certain type of interference between TX and RX bands called passive intermodulation (PIM). This unique interference effect is becoming especially problematic in FirstNet, the new national first responder telecommunications system in the U.S. PIM can cause performance problems in any wireless network if left unaddressed.


    What is Passive Intermodulation?

    Most designers consider PCB traces and passive components to be purely linear devices, but this is not always the case, especially in high frequency circuits. Sources of PIM are still subject to debate, but the most widely accepted source of PIM in PCBs is nonlinearity in PCB traces and passives. Note that the term “nonlinearity” here refers to a nonlinear relationship between voltage and current, which naturally leads to frequency mixing.

    Modern transceivers and radio systems which use carrier aggregation to provide increased bandwidth (thus increasing bitrate) alongside frequency division duplexing (FDD) are susceptible to PIM. When PIM occurs, carrier signals in one or more TX bands generate sidebands in the RX bands, and vice versa. This mixing between two or more signals arises in a nonlinear passives component, e.g., diodes and transistors. Note that resistors, capacitors, and inductors can exhibit nonlinearity, leading to PIM.


    Graph showing passive intermodulation

    PIM in a ~2 GHz system with carrier aggregation in LTE band #2

    Note that the 3rd order intermodulation product (orange line) is strongest, with the remaining intermodulation products falling off in intensity. Higher order intermodulation products are also broader than the carrier. There are also even ordered intermodulation products (not shown) at much higher and lower frequencies, but these are not problematic unless a system is using multiplexing over a very broad range of carrier frequencies.

    Although the strength of an intermodulation product can be significantly weaker than the carrier signals in a wireless/RF system, it can adversely affect download/upload speeds. With certain carrier frequencies, intermodulation products can fall into the receive band, which disturbs or even blocks discrete channels, as shown in the above figure. While an intensity difference of approximately -140 dB might seem like a huge difference between a carrier and an intermodulation product, this is enough to cause an approximately 20% decrease in download speeds.


    Addressing PIM in Passive Components

    PCBs in 5G systems and subsystems will need to be designed to operate frequencies that are higher than current 2.6 GHz 4G LTE wireless networks. The goal is to provide 10 Gbps speeds directly to mobile devices using mmWave frequencies (i.e., on the order of 10’s of GHz). PIM will continue to remain a problem for PCBs operating in 5G communication bands.

    Much like other noise sources, PIM cannot be entirely eliminated from a wireless system, but it can be minimized using creative design techniques. The proper substrate material with minimal dielectric soakage is one important aspect of 5G PCB design. Dielectric soakage is one nonlinear effect where some charge remains in a capacitive element (discrete or stray) during discharge, essentially forming a hysteresis loop. This is regarded as a source of second order PIM.

    Capacitors and inductors used in termination networks for RF components should be chosen judiciously. Capacitors can exhibit self-resonance at certain frequencies; for example, ~10 pF discrete surface-mount capacitors have self-resonance near 2 GHz. They also exhibit dielectric soakage at particular frequencies, leading to hysteresis. Inductors with ferritic cores suffer a similar problem of hysteresis.

    Poorly manufactured passives, over-etched copper, rough mating surfaces in connectors, and even residual dust or metal flakes can also cause PIM through the so-called rusty bolt effect. This effect has been known to cause frequency mixing problems in large-scale antennas that worsens over time and has nothing to do with the degradation of electronic components. This should be kept in mind when sourcing components and planning for manufacturing.

    As traces are regarded as a primary source of PIM, it is better to opt for wider traces where possible as this reduces current density, thus decreasing the amplitude of sidebands produced via frequency mixing. This may cause some issues with controlled impedance design, thus careful stackup planning is required to ensure accurate impedance calculations.

    Base transceiver in a 5G network

    A 5G base transceiver is one system that suffers from passive intermodulation

    With the rollout of 5G mobile networking already in progress by major telecommunications carriers in the U.S., companies producing prototypes for use in 5G networking have a role to play in ensuring PIM does not cripple PCBs in communications systems. A number of companies are developing test equipment for measuring PIM suppression mechanisms and PIM itself. PIM measurement standards are specified in IEC 62037. These measurements are typically performed in shielded enclosures, although they can also be performed in the field when more realistic data is required.

    Keeping up with the newest technology for wireless networking and telecommunications takes more than just a subscription to your favorite engineering society. You need PCB design tools with the best signal integrity and layout features in a single package. Altium Designer does more than just help you with schematic design, layout, and signal analysis; you’ll be able to plan for manufacturing and manage your supply chain within a single program.

    Download a free trial of Altium Designer today to learn more about its layout and signal integrity tools. You’ll have access to the industry’s best design data management and rules verification features in a single program. Talk to an Altium expert today to learn more.

    About Author

    About Author

    Zachariah Peterson has an extensive technical background in academia and industry. Prior to working in the PCB industry, he taught at Portland State University. He conducted his Physics M.S. research on chemisorptive gas sensors and his Applied Physics Ph.D. research on random laser theory and stability.His background in scientific research spans topics in nanoparticle lasers, electronic and optoelectronic semiconductor devices, environmental systems, and financial analytics. His work has been published in several peer-reviewed journals and conference proceedings, and he has written hundreds of technical blogs on PCB design for a number of companies.

    most recent articles

    Back to Home