Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Termination Methods in High Speed and High Frequency PCBs

    Altium Designer
    |  September 7, 2018

    Transmission lines on a smartphone

    To this day I still have a tall stack of printed articles I refer to when working on a new research or design project. Even though I know I can find all of this information online, I still refer to my trusty stack of articles regularly for design information. Keeping all the relevant system design rules and research results in one place saves me a huge amount of time.

    Whether you’re working with PCBs or any other electronic system, keeping track of every design aspect is a tall order. Any PCB familiar with high speed design rules is familiar with impedance matching. There are a number of termination methods available, depending on the solder and trace arrangement, component footprint, and frequency band of interest.

    Series Termination

    Looking at the impedance of traces, including microstrips and striplines, the impedance of a trace tends to saturate towards a constant value at very high frequencies (e.g., at RF levels). Simple termination can be performed using either a series or shunt resistor connected between the end of the trace and the component load. The compensation this provides will be a constant value that is independent of frequency.

    Using a series resistor is rather simple as the resistor can be placed in-line with the trace. An interconnect on the surface layer will not require any vias, and the termination will be quite accurate. The series resistor should match the impedance of the signal source rather than the load. Series termination is also advantageous as it consumes a small amount of power.

    Any residual reflection at the end of the link could be suppressed as the series resistor effectively increases the damping constant for reflected signals, which changes the RLC resonance condition in the link. The series resistor also effectively increases the RC time constant, which increases rise times in digital signals and adds skew in a digital circuit.

    This is helpful for suppressing bit error rates, but this also increases the impedance saturation frequency. In most cases this will not be a problem; the signal frequency already tends to be high enough that the impedance of the link has already saturated at a constant value.

    Backside of a green PCB

    You’ll want to make sure that you know your board front-to-back to catch error rates in time.

    Parallel Termination Schemes

    A better option is termination with a shunt (i.e., parallel) resistor. This involves connecting a parallel resistor between the load and ground that is equal to the line impedance. This is a better option in components without programmable output or input impedance.

    An alternative parallel termination method is the Thevenin termination method. This method connects a resistor between the component power source and the termination point, as well as a second resistor between the termination point and ground. This method is rather simple as the equivalent parallel resistance between these two resistors just needs to be set equal to the trace impedance.

    Fly-by parallel termination methods typically require the use of a via to route connections between the input pin on the load and the power and ground connections. Therefore, the via stub on this connection should be made as short as possible. This sets the stub resonance frequency to a very high value and also minimizes reflection from the stub itself, which suppresses EMI. If possible, the stub should be eliminated entirely by backdrilling.

    Other Termination Methods

    One simple method for matching impedance between a source, trace, and load involves the use of a transformer. The turns ratio required to compensate an impedance mismatch is related to the ratio of the new impedance value.

    The turns ratio in the transformer is equal to the square root of the ratio of the impedance on the secondary side to the impedance on the primary side. This allows you to easily calculate the turns ratio required to generate a specific impedance on the secondary side of the transformer.

    Using a transformer to match impedance may not be practical in all PCBs due to the footprint of these components. Transformers with ferrite cores are only useful up to hundreds of MHz, and transformers will be less effective for impedance matching in higher frequency devices.

    Antenna modules in a PCB will inevitably require use of an amplifier, regardless of whether an antenna is used for transmitting or receiving signals. The amplifier is usually built into the receiver or transmitter. The impedance of the antenna must equal the impedance of the transmitter/receiver in order to pass the maximum amount of power between these components.

    This is typically done by adjusting the impedance of the transmitter/receiver using one of the methods above, or by using an inductor/capacitor pair. One of these components must be placed as a shunt element, and the other is placed in series. A Smith chart is the best way to visualize the level of mismatch in an antenna circuit and provides a useful guide when matching impedances.

    SIM card holder and antenna on a green PCB

    SIM card holder and antenna on a green PCB

    Working with a dual band antenna is a different beast as it requires impedance matching in both bands simultaneously. Termination in both bands requires two capacitors and two inductors. A capacitor and inductor are used as a pair to match a single band. One pair must be placed in series with the antenna/load, and the other pair will be placed as shunt elements.

    Terminating one band changes the termination conditions in the other band, so each band cannot be impedance matched sequentially. Proper termination and determining the exact placement of each capacitor and inductor requires some trial and error and design experience. Simulation programs can also be helpful. Note that these steps for terminating a dual band antenna apply to any component that requires multi-band termination.

    With so many termination options available in a PCB, you’ll need CAD and analysis software that allows you to precisely determine the level of impedance matching required for your traces. The built-in CAD, simulation, and component management tools in Altium Designer® can help you avoid signal integrity problems caused by improper termination.

    Now you can download a free trial and find out if Altium is right for you. Talk to an Altium expert today to learn more.

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home