Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • A365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    SAP and mSAP in Flexible Circuit Fabrication

    Tara Dunn
    |  March 24, 2019

    SAP and mSAP in flex Tara Dunn cover

    Question: What is SAP and mSAP?

    This is an excellent question. These acronyms are getting a lot of attention lately and are relatively new acronyms for the PCB industry, which ironically is infamous for using them. SAP and mSAP are not new terms to the electronics industry, they are common processes in IC substrate fabrication, but these are processes that are emerging technology in the PCB fabrication segment.   

    After saying this is new technology for PCB fabrication, I am reminded that most of our smartphones contain circuit boards that use this technology. But outside of the high-volume, smartphone market, the rest of us are slowly starting to learn about and implement this technology for flexible circuits, rigid-flex and rigid PCB applications. 

    Let’s start with a few definitions:

    Subtractive etch process: This is the traditional flexible circuit fabrication technique. Starting with laminate consisting of polyimide and copper, typically ¼ ounce or greater, the circuit pattern is formed by patterning and etching away the unwanted copper. 

    SAP: Semi Additive Process – This process utilizes additive process steps, adding copper to the base dielectric rather than subtractive processes to create the circuit pattern. 

    mSAP: Modified Semi Additive Process – This process also utilizes additive process steps rather than subtractive processes to create the circuit pattern.

    What is the benefit of SAP and mSAP?

    Subtractive etch processing is the predominant PCB fabrication method. This technology is typically limited to feature sizes of 3 mil line and space and greater. A few companies with advanced capabilities can offer line and space down to 2 mil, but this is specialized technology with leading-edge equipment. Today’s increasingly sophisticated electronics are pushing the limits of this technology with a need for finer line and space. 

    Additive processing, on the other hand, is predominant in IC substrate fabrication and just emerging in the PCB fabrication environment. Additive processing allows line width and space at 5 um and below. IC fabrication is typically limited to much smaller panel sizes than we typically see in PCB fabrication. As this process evolves and is adapted to the PCB fabrication environment, this has the potential to bridge the gap in both feature size and panel size. 

    What is the difference between SAP and mSAP?

    Both follow the same basic manufacturing process; the primary difference is in the seed layer of copper. SAP processes begin with a thin seed layer of electroless copper, less than 1.5 um, and mSAP processes begin with a thin laminated copper foil, greater than 1.5 um of copper. First, a thin layer of copper is coated on the substrate and followed by a negative pattern design. Copper is then electroplated to the desired thickness and the seed copper layer is removed.  

    As an example, one method of fabricating with a semi-additive process utilizes an ALD precursor ink, which controls the horizontal dimensions of the line width and space while the vertical thickness is controlled by an additive process that deposits metal only on the pattern defined by the precursor ink. 

    Basic process steps:

    1. Drill vias in the substrate using either mechanical or laser drills.

    2. Prep the substrate for processing. This is typically a simple cleaning step and mounting in the appropriate material handling system.

    3. Coat and cure the substrate with a precursor catalytic ink, resulting in a subnano layer (<1nm thick) of catalytic material.

    4. Deposit electroless copper on the precursor. The copper thickness ranges from .1 um to 1 um.

    5. Image a layer of photoresist using photolithographic techniques to create the pattern that copper will be deposited. The geometry of lines and spaces that can be produced at this point is anything greater than 5 um.

    6. Electrolytic copper plating completes the circuit pattern, followed by stripping the remainder of the resist and flash etching the seed layer of copper.  

    Potential applications for additive fabrication

    As I mentioned earlier, the smartphone market is the forerunner bringing mSAP processes to high volume PCB fabrication. Current designs blend both subtractive-etch processing and mSAP processing. This combination was critical to the thinner, smaller, motherboard design which freed up space for the more powerful battery we all enjoy. Technology in the iPhone X teardown shows line width and space designed at 30 um and predictions for future designs is for 10 um features. 

    Other candidates for this technology would be any application that requires extremely thin copper, is concerned with space and weight, and applications that push the limits of feature sizes created with subtractive etch processing. 

    The medical market is one example, using the SAP process to fabricate a double-sided flexible circuit with 20 um line/space to be used in an implantable application. This example required gold as the conductive metal, rather than copper, for biocompatibility reasons. 

    Applications requiring high-density pinouts are starting to experiment with stack-ups and the blended layer approach that has been successful in the smartphone market. This approach is finding success incorporating layers with subtractive etch technology with layers, with SAP processing, reducing the overall layer count and the number of lamination cycles required in HDI designs. 

    To answer the original question:

    mSAP and SAP are not new terms in the electronics industry, but they are new terms for the PCB fabrication segment of the industry. Modified Semi-Additive Processing and Semi-Additive Processing are new buzzwords and gaining attention as a potential solution for applications that are constrained by limitations in feature sizes with the subtractive etch process. These processes have the potential to bridge the gap between the PCB scale and IC scales designs.

    With Altium, you will always have access to expert content; read more about rigid-flex PCB design guidelines and layout in Altium Designer® or talk to an Altium expert today to learn more.

    About Author

    About Author

    Tara is a recognized industry expert with more than 20 years of experience working with: PCB engineers, designers, fabricators, sourcing organizations, and printed circuit board users. Her expertise is in flex and rigid-flex, additive technology, and quick-turn projects. She is one of the industry's top resources to get up to speed quickly on a range of subjects through her technical reference site PCBadvisor.com and contributes regularly to industry events as a speaker, writes a column in the magazine PCB007.com, and hosts Geek-a-palooza.com. Her business Omni PCB is known for its same day response and the ability to fulfill projects based on unique specifications: lead time, technology and volume.

    most recent articles

    Back to Home