Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Utilizing Fanout Strategies To Maximize PCB Real Estate

    Altium Designer
    |  March 1, 2017

    I have a coworker who always jokes about how “back in his day” PCB design was straightforward. While I usually take his comments as “old man” humor, I had to agree with him one day when I realized how dense my PCB designs had become. The pressure from management to make my boards smaller and smaller had resulted in some heavy routing issues and my dog bone fanout strategies were not cutting it.

    In designing integrated circuits, fanout refers to the number of gate inputs a logic gate output can be connected to. While dog bone fanout is a tried-and-true method, it is worth considering the merits of a via-in-pad fanout approach for specific applications, as well as examining the various considerations which should be taken when developing a fanout strategy.

    Key Considerations when Planning a BGA Routing Strategy

    Here’s some background on why fanout strategies matter, along with detailing what is fanout in PCB Design. Ball grid arrays (BGAs) are used in many of today’s semiconductor devices and microprocessors. BGA packaging involves a growing number of I/Os, making signal escape routing a significant engineering challenge for PCB designers. Fine pitch BGAs often require diagonal placement of via capture pads. Flared dog bone fanout can allow for effective partitioning, and it is a preferred method for fanout of BGA pads. With BGAs’ growing prevalence, design density and complexity, higher pin number, and shrinking size, coming up with clear board routing guidelines with high-pin and fine-pitch BGAs is an evolving challenge.

    The task of the Printed Circuit Board designer is to develop fanout strategies that don’t negatively impact board fabrication quality and manufacturability. An effective circuit board routing strategy involves a number of variables, including:

    • I/O pin number

    • BGA pad size

    • The width of spacing of traces

    • Layers needed to escape BGA

    • Ball pitch

    • Land diameter

    • Via types

    When working as an electrical engineer, product architect, or layout designer on a project, it’s important to have working designs that also take materials costs into consideration. Keeping cost in mind, Printed Circuit Board designers are frequently challenged to reduce board layers, but this need must also be balanced with the required layers to adequately escape signal traces from BGAs.

    Sometimes a through hole via does the trick

    Image source: Flickr User Uwe Hermann (CC BY 2.0)

    When To Go Micro

    When deciding between dog bone fanout and via-in-pad fanout, you need to consider the pitch. Pitch is just the space between the center of one BGA ball and the center of another BGA ball. Dog bone fanout is typically used to accommodate BGAs with 0.5 mm and above ball pitch. Via-in-pad fanout is often used with micro BGAs that have an ultra-fine pitch (< 0.5 mm).

    Dog bone fanout is unique in that it creates a partition with four quadrants, with a center channel in the BGA running multiple traces from the middle. Determining the via size needed for the fanout is essential (and is also dependent upon variables such as the thickness of the PCB, the amount of traces being routed, and the device pitch).

    If you’re like me and are consistently using micro BGAs, then you should consider setting up your design for laser drilled microvias. Microvias have the advantage of being precisely aligned in terms of depth; they are completely copper filled and planar to the surface of the board. A space saving technique I’ve come across wisely suggests working your fanout design from the outer BGA row towards the inner one, where the inner rows are dropped down a layer from their respective outer row so that they can fanout without being physically blocked. This approach makes the most use out of the layers in your board and maximizes space by minimizing drill depth and diameter.

    How to Efficiently Implement Fanout Strategies in your PCB Design

    When working out fanout designs with Altium Designer®, it’s important to keep the Fanout Control rule in mind (in the Routing category). The way this rule works is that it provides options when fanning out surface mount components connecting signal and/or power plane nets. In high-density designs (as are often the case with modern BGAs), routing space is especially tight, and this rule will become your best friend in helping to successfully route your board.

    With easy to use PCB design software, in 20 years you’ll be able to tell your younger co-workers about how straightforward PCB design guidelines were ‘back in your day’.  

    Check out Altium Designer in action...

    Powerful PCB Design

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home