Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Collaborative Design Part 3: Crossing the ECAD/MCAD Bridge

    Max Clemons
    |  April 12, 2016

    Interfacing between electrical and mechanical design software is one of the most important forms of design collaboration in modern electronic design. As PCBs become smaller and more dense, and as mechanical housing restrictions become tougher, there is a great need for seamless design data transfer. For the third installment in this blog series, we'll take a look at some of the options available for crossing the boundary between electrical and mechanical domains.

    So now that we’ve established the inner workings of a collaboration system (see Part 1 and Part 2 of this blog series), let’s check out one of the applications of collaborative design. As discussed in Part 1 of this series, the term design collaboration can mean different things to different people, and can span a single domain or several. Some of the different domains include electronic design (PCB/Schematic/), mechanical design, supply chain, manufacturing, and other spaces accessed during a product’s lifecycle.

    ECAD/MCAD collaboration, between the electrical and mechanical design domains, is particularly important as PCBs become smaller and more densely populated, and as mechanical constraints become more strict in turn. Having a good bidirectional interface between the two domains can make life infinitely easier for all parties involved, and can help ensure a cleaner design cycle, with greater product integrity in the long run. While there are several options for interfacing across CAD software, there are currently two standards commonly used.

    DT01_In_Solidworks.png

    Figure 1: Having the ability to interface between electrical and mechanical CAD software is essential for modern electronic design.

    STEP (Standard for The Exchange of Product model data)

    A true 3D representation of design data, STEP models can be used for PCBs, components, mechanical assemblies/housings, and any other design files which may be collaborated on by multiple designers using different programs. It’s important, however, to understand both the benefits and limitations associated with using STEP for bidirectional transfer between programs.

    Benefits

    Limitations

    Adheres to ISO 10303 standard, meaning all design models are consistent and follow the same protocol.

    Since it is intended as a common format for data exchange between programs, some features exclusive to each piece of software will inherently be lost.

    Having such a common and generic format means several component manufacturers make 3D models of their available for download.

    Does not lend itself well to complex design features, and the addition of some items (such as copper traces, silkscreen, etc.) can increase file sizes significantly.

    Being a true 3D format (instead of a pseudo 3D / “2.5D” format) allows for complex model features and curvature, such as folded board shapes for Rigid-Flex PCBs.

    Has no function for true collaboration, and simply requires manual checking by each to ensure design data is correct and up to date.

    The two Application Protocols (APs) under ISO 10303 used for 3D CAD data are AP203 (older format) and AP214 (newer format). More information about these APs can be found here.

    IDF (Intermediate Data Format)

    For several years, IDF was considered the de-facto standard file format for transferring design data between electrical and mechanical CAD software. In reality, IDF is not truly 3D, and is instead represented as so-called “2.5D”, that is, viewable as 2D in ECAD, and extrapolated using model height information to 3D in MCAD. Of course, this scheme does not lend itself to complex 3D shapes, which may be required for certain data exported to the mechanical domain, such as folded Rigid-Flex board shapes.

    IDF is good for preliminary mechanical clearance checking, since component and board heights are recorded and transferred with the file, but there are limitations. If clearance checking or modelling is more involved, component bodies must be replaced post-transfer, meaning additional work for the mechanical , as well as potential issues matching body alignment and rotation.

    Other Solutions for Electrical/Mechanical Interfacing

    Native 3D™ PCB Editing

    Including tools within ECAD software for mechanical design, or at least alignment, placement, and export of 3D mechanical models, allows much of the work to be done in a single software package. Altium Designer® includes capabilities for aligning 3D component models to footprints, modelling and clearance checking for housings/enclosures, and if necessary, standard exports of complex PCB features for MCAD interfacing.

    ECAD/MCAD Collaboration Tools and Formats

    Certain third-party tools enable better collaboration than could be offered using either of the aforementioned file formats. Using a more robust design data transfer system, these tools allow much more comprehensive bidirectional design, visibility and conflict resolution, as well as more complete integration with each software interface. Similarly, IDX (Incremental Data eXchange) offers this same sort of bi-directional capability in a vendor-neutral file format.

    Where Does ECAD/MCAD Collaboration Go from Here?

    With the inclusion of 3D editing features in most ECAD software packages, the need for good software file transfer solutions is dwindling, beyond perhaps the initial creation and import of mechanical data.

    Multi_Board_With_Flex.png

    Figure 2: Complex electro-mechanical assemblies, such as multi-board designs connected through flex cabling, will be a driving force for ECAD/MCAD collaboration moving forward.

    This doesn’t mean there is no need to support and improve such an interface, however. It simply means that true collaboration between software domains will become that much more important to the design process. More sophisticated projects, such as mutli-board designs and complex electro-mechanical assemblies, are still generally beyond the scope of a single domain. But that won't be for long. Our flagship PCB design software is changing ECAD/MCAD collaboration​ for the better. 

    About Author

    About Author

    Biography

    most recent articles

    Back to Home