Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Design Tips For Incorporating GSM Modules into an Embedded System

    December 12, 2017

    Adult family eat dinner in garden, over shoulder view

    As loving and rewarding as a family is, sometimes they can be a pain. My aunt, for example, refuses to communicate with my grandfather. They live less than thirty minutes apart; however, refuse to see each other. This makes coordinating visiting my family unnecessarily difficult as, often, I need to make separate day plans in order to see each so-to-speak faction. But what’s most stressful, is that often it leaves the middleman communication role to me: if there is something going on with either my aunt or my grandfather, then I am the one who has to inform either of them. This process takes a lot of mental energy and requires a lot of keeping track.

    Serving as a middle link for communication can be exhausting. This is especially true for mobile devices such as tablets and phones when you integrate a Global System for Mobile Communications (GSM) module with an embedded system. While I don’t often empathize with machinery and modules, the difficulties with maintaining power integrity and machinic exhaustion were feelings that I often felt when trying to plan out alternating holiday parties.

    Mobile Devices and Global Systems for Mobile Communications

    A GSM module is used to set up communications between an embedded system and the GSM cellular network. The GSM operates at different frequencies worldwide. Frequency bands of 900Mhz and 1800 MHz are commonly used in Europe, Asia, Oceania, and the Middle East, while the United States uses 950 Mhz and 1850 Mhz.

    A GSM module enables the embedded system to send and receive text messages, send data on the General Packet Radio Service (GPRS Modem) network, and make or receive voice calls. As with a regular mobile phone, the GSM module requires an activated SIM card to operate.

    The age-old GSM modem technology is also widely used in other kinds of applications, including vending machines and energy systems. GSM technology enables an embedded system to transfer operational data to a central server without the need for human intervention. A GSM module could be used for anything as convenient as vending machines capable of alerting suppliers when ingredients need to be restocked, or as particularly helpful as energy efficiency systems that monitor electrical parameters and enable building management teams to control the system remotely.

    Hand pushing a button on vending machine operation panel
    Some vending machines use GSM modules to keep track of inventory.

    How a Microcontroller Integrates with a GSM Module

    GSM modules are commonly available in a ready-to-mount PCB format, together with a SIM card socket and an antenna jack. Modules are also available in an integrated (IC) package, but that requires you to design the complete circuitry for the GSM IC.

    The SIM900A is a popular GSM module that I’ve used in my designs. The SIM900A IC operates at a range of 3.4V to 4.4V. However, it has a peak current that can go beyond 2A, and this can affect the way you design your PCB. The SIM900A includes some critical communication circuitry for the GSM module— with the microcontroller using the Universal Asynchronous Receiver-Transmitter(UART) and a connection to the SIM card.

    The microcontroller uses the standard AT&T protocol to communicate with the GSM module. Operations like sending and receiving text messages are completed by sending the correct command AT&T sequence to the GSM module. This shouldn’t be an issue for an experienced firmware developer unless the hardware design is at fault to start with.

    Best Practices When Designing a PCB with a GSM Module

    In my first ever prototype, I spent hours trying to discover the reason why the microcontroller reset itself each time it tried to send text messages. After ruling out runaway codes, bad pointers, and stack overflow, I finally realized that the voltage regulator was insufficient to withstand the current drained by the GSM module during data transmission.

    One of the issues that plague GSM module design is the limited power supply capacity. It isn’t difficult to ensure that the GSM module receives the correct voltage level, but the trick is in ensuring that the power is adequate when transmitting data. A typical GSM module may draw more than 2A when transmitting.

    You need to ensure that the voltage regulator that’s supplying the GSM module is able to handle the sudden spike in current. Not only that, the power supply copper connection has to be wide enough and thick enough to handle the high current. Otherwise, you’ll risk damaging the copper track itself. It is also important to use proper heat dissipation techniques for the power management , as it can produce a great amount of heat.

    Electromagnetic interference (EMI) can also be a problem that affects the stability of your embedded system. An antenna is usually connected to the GSM module to boost the radio wave signal strength. The whole system needs to undergo stringent testing to ensure the microcontroller is not affected by the EMI, particularly during transmission and reception. best practices, such as ensuring adequate clearance between GSM modems and other onboard modules, helps in reducing EMI problems.

    Printed  board with electronic components
    Ensure that the power management circuitry can handle current draw from the GSM module.

    The GSM module introduces new challenges and uncertainties into a design. While you can’t design around your family, you can design around power integrity. This is where using tools like Altium Designer®’s PDN Analyzer™ will ensure that the current density in the power connections is at the appropriate level.

    Still worried about the potential problems for a GSM module? Learn more by talking to the experts at Altium.

    most recent articles

    Back to Home