Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions

    World-Renowned Technology for Embedded Systems Development

  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience


    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Flex Circuit Specific Terms and Definitions

    Tara Dunn
    |  July 23, 2019

    Recently, I was having a few discussions with someone very new to flex design. I was trying to be helpful and going through several things that are specific to flex and rigid flex design which should be considered as you start your first design. He was listening and taking notes, and suddenly stopped me and said, “you lost me a few items back, I am not completely sure I understand this terminology.” This flashed me back to memories of my early days in the industry, my having been slightly confused by the terminology also. Back then we didn’t have google to help us out, either!  

    This blog is written for those of you who are new to flex and rigid flex, and may be unfamiliar with some of the terms that get volleyed around in conversation. 

    Flexible Circuit:  

    A pattern of conductive traces bonded on a flexible substrate. There are several different substrates available, the most common being polyimide. Different than rigid materials, these laminates will have rolled annealed (RA) copper for improved flexibility. 


    This is a hybrid construction, using flex materials in areas that need to bend or flex and rigid materials in areas with dense component areas, surface mount components on both sides of the PCB, and applications with higher layer count, dense routing areas.  Most common rigid materials can be incorporated into a rigid flex construction. 

    Flex Tails:  

    Typically refers to the areas of flex extended out past the rigid portions of the rigid flex. This may be one flex region, or several bands of flex areas that extend in various directions. Rigid flex is often used to solve packaging issues and connect on multiple planes. Flex tails enable this. 


    Often used to accommodate a shorter flexible area if there is no room for a service loop. Instead of using the full width of the flex region between areas for each inner layer, the area can be divided into smaller bands of equal width for each inner layer, eliminating buckling and stress in that area.                                                                   


    This is a protective barrier material often used in rigid-flex fabrication. Often, this is a coverlay material used to protect exposed flexible materials during processing and is removed from the flexible portion of the board before shipment. 


    A layer of insulating material applied to the flexible circuit to insulate the conductor pattern. Coverlay is typically a layer of polyimide with acrylic adhesive. Film based coverlay is much more flexible than cover-coat materials and highly recommended for dynamically flexing applications or flex that will have a tight bend radius. It is important to be sure to spec enough adhesive to fully encapsulate the copper conductors. 


    This is typically a photoimageable cover-coat similar to traditional PCB solder mask but formulated to be flexible. Cover-coats are often used with lower layer count flex, applications without high flexing requirements, and in situations with tight pad features that exceed standard drilled coverlay capabilities. 

    Bikini Cut:  

    Coverlay material used to insulate the circuitry on the flexible layers is typically bonded with acrylic adhesives. It is recommended to NOT have acrylic adhesive extend more than .050” into the rigid portion of the design to avoid reliability issues in the plated through-hole areas. Bikini cut refers to cutting back the acrylic adhesive, so it is not extended into the rigid portion of the stack up. 

    Gang Open:  

    With drilled coverlay the minimum distance between features is .25 mm. If that space is not available to allow proper registration. Gang opening, opening a block of pads with one single coverlay opening is suggested. If this is not possible, common alternatives include LPI solder mask or laser cutting of coverlay. 

    Squeeze out:  

    As coverlay is pressed and cured, the acrylic adhesive will “squeeze out” onto the pad area. Attention should be given to the size of the coverlay opening and pad size to factor this into annular ring calculations. 


    Gradual transition point from pad to conductor to eliminate stress points. The pad to trace interface in a flex design is highly susceptible to cracking or breaking. Filleting is recommended in all flex applications.                              

    Anchors/ rabbit ears:  

    Extra copper extended from the copper pad area and encapsulated by the coverlay to help anchor the pad to the substrate. This is recommended for all flex designs and is especially important with single-sided designs that do not have a plated through-hole to help anchor the copper. 

    Bend Radius:  

    This is the ratio of the bending radius measured to the inside of the bend to the overall thickness in that area.  Typically, recommendations for non-dynamically flexing designs is 10:1 for single and double-sided construction, and 20:1 for multilayer construction. These can be exceeded but should be evaluated carefully. Dynamically flexing applications should be discussed with your fabricator for a recommended stack up.

    Button Plate:  

    Fabrication process to selectively electroplate copper to vias and onto the pads capturing the vias. The remaining copper traces do not have electrodeposited copper, increasing the flexibility of the circuit. 

    I-Beam Effect:  

    Stacking conductors on adjacent layers directly on top of one another, increasing the stiffness of the circuit in the bend or fold areas. Staggered conductors are recommended if possible, to retain the maximum flexibility of the circuit. 

    I hope this helps explain some of the common terminology with flex and rigid-flex materials and design. Please reach out to me with any questions or follow me on Twitter for further information!

    Talk to an Altium expert today to learn more or continue reading about why Altium Designer® is the best design solution for rigid-flex PCB Design.

    About Author

    About Author

    Tara is a recognized industry expert with more than 20 years of experience working with: PCB engineers, designers, fabricators, sourcing organizations, and printed circuit board users. Her expertise is in flex and rigid-flex, additive technology, and quick-turn projects. She is one of the industry's top resources to get up to speed quickly on a range of subjects through her technical reference site and contributes regularly to industry events as a speaker, writes a column in the magazine, and hosts Her business Omni PCB is known for its same day response and the ability to fulfill projects based on unique specifications: lead time, technology and volume.

    most recent articles

    Back to Home