Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions

    World-Renowned Technology for Embedded Systems Development

  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience


    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    High Current PCB Design and its Real World Applications

    Altium Designer
    |  February 6, 2018

    High current PCB design

    With the rise of PCB applications stretching far and wide, designs are being created for applications that extend past simple signal integrity solutions. Advancements in material technology, PCB manufacturing capabilities, and the rising demand for PCB design is opening up the floor for many industries that otherwise have been dormant in the PCB world. Many limitations that were not present a handful of years ago, are beginning to loosen.

    Of course, one of the largest constraints for PCBs was how to get PCBs handling large power distribution networks, high voltage, and high current capacities without being massive, bulking structures. Here, we’re going to explore a few real-world applications of the advancements that folks are bringing to the table with high current PCB designs.

    On the Rise: PCB Applications in High Current

    When discussing applications in high current, most of the time, we will be dealing with the distribution and management of power through the PCB. This, however, was once an area that was not explored by any , no matter how brave. Mixing signals in your PCB was simply far too complex of an operation since many of the components on a dedicated board have their own power requirements and would be a nightmare to work with.

    In addition, the availability to print boards that could physically handle the loads weren’t up to par. But we are moving forward at an extremely quick rate and are exploring the depths of mixing signals again based on the emerging technology, and rising demand. In order to ensure that we are staying safe within this explosive domain, it is important that we are maintaining our checks and analysis of the heat and power maps for our designs.

    Solar Panel Power Distribution

    One industry in which technology advancements are being leveraged is within the solar panel arena. I like to conceptualize PCBs in relation to non-printed circuits as a flattened version of a bird’s nest of wires and components. Imagine the days where we still relied on physical cables to run signals through circuits—what a mess. The solar panel industry evolved around the same school of thought; “Let’s take all this great technology, and flatten everything onto a board.”

    Solar panels on a roof
    Power distribution within solar panel systems are often carrying high current loads

    Solar panels and PCBs go together hand-in-hand based on their mutual respect for the flat-pack thinking, but what does this have to do with high current applications? Consider the purpose of a solar panel and you’ll see that it is a large (hopefully getting smaller) battery. Since PCBs are usually designed for small voltage and low current signal operations, this poses a challenge for the high voltage and current that comes with functional solar panels.

    Through advances in current-carrying capabilities for the copper in our PCBs, this challenge is being mitigated. What is typically referred to as ‘heavy copper,’ is changing the way that folks look at PCBs. It enables power distribution to be installed on signal boards. Of course, this causes integrity issues and will need careful consideration when designing, but when leveraged correctly, your power and signal operations can be married onto a single board.

    Freeing Up Some Space

    Of all the industries there is none more scrutinous than that of the military. This is true in most applications, let alone that of utilizing high current PCBs within its products. Along with the similar demand and technology that is shaping the solar panel industry, smaller and more capable designs are being pushed further into military designs. More specifically, power distribution (as well as transformations) are becoming integrated straight into the PCB.

    Of the many examples that could be listed, I came across a game-changing design that is currently being studied and applied to a variety of systems. Within each craft produced by the military, most will inevitably have a radar system embedded within. Space, however, is extremely limited within these crafts as they continue to pump in more and more tech.

    Military radar screen
    Transformation of power is now being integrated within radar system’s PCBs.

    One of the largest space suckers I’ve had the honor of dealing with is that of the transformer—those massive hunks of iron that embody hundreds of copper windings to induct the transfer of energy. These high current transformers, crucial to providing proper power to said radar systems, are now being squished down to their flattest possible shape: PCBs. These designs are even showing comparable results to that of their hunky counterparts.

    As you can imagine this will be changing the way power distribution is managed and designed. But why stop there? If we can flatten transformers to integrate directly onto the PCB, what other innovations will follow suit? What other shapes and systems will soon be flattened and integrated?

    Flattened Power, High Current: What’s the Catch?

    Of these emerging technologies, specifically within the newer designs of PCB power management, there will exist some considerations that must be taken into account in order for efforts to proceed in a smooth and orderly fashion. One overarching issue that will arise with these new power systems is, of course, that of thermal management.

    Uneven distribution of power and current within these PCB applications can wreak havoc on and in some cases even be catastrophic to your design. Imagine your solar panel catching fire atop your beautiful tiny house.

    Great care and specific analysis will be required when joining in on the high current, flattened powered, PCB wave that we are seeing from the forefront of innovation. Leveraging features similar to Altium’s PDN Analyzer™ will be the first line of defense when it comes to keeping your multi-power network and current densities in check and not on fire.

    Whatever the future will continue to bring within the high current, power PCB designs, we can be sure that by scrutinizing our designs with great software like Altium Designer®, as well as keeping other simple, yet effective pillars of design in mind, we can continue to push the envelope to further extents.

    If you are curious to see what other benefits Altium Designer can bring to your high current design, talk to an Altium Designer expert today.

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home