Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Light Dependant Resistors: The Fundamentals of Automatic Street Light Design

    Altium Designer
    |  March 23, 2018

    Streetlights in a dark road

    I’m not usually afraid of darkness. In fact, I can’t fall asleep at all if any lights are left on. But a few nights ago, I desperately missed the familiar glow of street lights while attempting to observe sea turtles laying their eggs at a local beach. I missed out on an experience of a lifetime, hidden in pitch darkness.

    Of course, street lights might sound dull compared to the exciting electronics behind technologies like the Internet of Things (IoT). But without a solid design, the street lights we take for granted may not turn on when they’re supposed to. Let’s start with the basic science that makes street lights intelligent.

    The Evolution of Automatic Street Lights

    Back when I was a kid, street lights were not as intelligent as they are now. They always turned on at a specific time in the evening and turned off early in the dawn. In cities where the daylight didn’t vary much, there weren’t any significant issues, except when clouds blocked sunlight.

    These days, street lights are far more intelligent and can turn on as soon as ambiance decreases. The street light’s control mechanism senses brightness using a light sensor and decides whether to switch on the light. In electronics, a light sensing component is the Light Dependent Resistor (LDR).

    How Does an LDR Work?

    As the name implies, a Light Dependant Resistor functions by varying its resistance with respect to the light intensity that it is exposed to. The resistance decreases as light intensity increases. A typical LDR has resistance in the range of megaohms when it’s dark, and hundreds of ohms in daylight.

    LDRs are made of semiconductors that contain very few moving electrons. This explains their high resistance in darkness. When exposed to light, the semiconductor absorbs the light photons, which results in more electrons being released. Naturally, the resistance decreases.

    A Light dependent resistor
    LDR is the heart of an automatic street light

    Key Aspects of Automatic Streetlight Design

    Besides the light sensor, one of the main considerations in designing a street light is choosing the correct light bulb. The light bulbs used in street lights are usually high-voltage and high-luminance. The brightness of the bulbs is usually decided using roadway width and the distance between the lights in a specific formula.

    Once the light bulb’s specifications have been chosen, you have to design the control circuit. With the LDR at its core, there are two options to approach the design: with or without a microcontroller.

    The principle of using the LDR to turn on the street light is to capitalize on the changing resistance on a voltage divider. The LDR is connected to another resistor, and the varying voltage between both components is used to activate a transistor. The transistor is then used to switch on the light bulb through a mechanical or solid state relay.

    If you’re not fond of designing with transistors, a microcontroller can also be used in an automatic street light design. The same principle of voltage divider applies, and the varying voltage is connected to the Analog to Digital Converter (ADC) pin of the microcontroller. The microcontroller then uses a digital threshold value to decide on switching on the light bulb.

    A microcontroller on a circuit board
    A microcontroller based design allows more flexibility. Editorial credit: spaxiax / Shutterstock.com

    Naturally, using a microcontroller offers more flexibility, in terms of adjusting the threshold value of switching on the light. This may be useful when the LDR suffers degradation in time and its dark resistance increases. A configuration module in the firmware will allow the offset value being taken into account by the street light algorithm.

    Optimizing Your PCB Design for all Environments

    When designing and manufacturing the Circuit Board, designers also have to consider the environment where the PCB will be installed. If it is installed in a marshaling cabinet that may be exposed to the elements, the Printed Circuit Board needs to be designed to operate reliably in a hot and humid environment.

    A professional PCB design tool like Altium’s Altium Designer® can help you optimize the key aspects of street light design and develop functional street lights for any environment, humid or otherwise.

    Not sure if your street light will turn on when it’s dark? Talk to an expert at Altium.

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home