Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions

    World-Renowned Technology for Embedded Systems Development

  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience


    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    PCB Design for Manufacturing Guidelines: How to Avoid Critical Design Mistakes

    November 8, 2017

    cakes burning in oven

    I swear I would have been on the journey to be the next MasterChef if I had not completed my engineering degree. Not because I’m terrifically good at cooking, but because I didn’t give up after a horrifying attempt to cook fried rice vermicelli. Failing to soak those long threads of noodles resulted in pasta with a hard wire texture that was beyond salvageable. This was a good example of what can happen to a dish when you don’t follow directions carefully.

    Like in cooking, mistakes are bound to happen in electronics design, even for the most meticulous designers. But some mistakes are critical enough that you will have to scrap the entire printed board (PCB) and start over. When you’re patiently waiting for a prototype PCB layout to test your circuits, this can spell costly delays in the product development cycle.

    Critical Design Mistakes in PCB Design for Manufacturing

    We all hate to make mistakes. But in reality, it takes two or three tries to get the perfect design. As long as we fix mistakes in the early designs by simply cutting off tracks or jumper wires, the impact on the development process is minimal. The same can’t be said about some of the following mistakes that almost always ruin your Printed Circuit Boards.

    1. Using the Wrong Footprint

    While most passive components are available in both through-hole and surface-mounted form factors, integrated circuits (ICs), especially special function ICs, are produced in only a few package types. Confusing a Small Outline Integrated Circuit (SOIC) and a Shrink Small Outline Package (SSOP) may result in trying to fit a smaller IC on a larger footprint, or vice versa.

    Remember to verify the package type of your components by thoroughly checking their datasheets. Don’t make assumptions and ensure that both the dimensions of the IC and its pitch size are correct. I learned my lesson when I mistakenly used the ‘narrow’ version of a SOIC since the ‘wide’ version had the same pitch size.

    Electronic component on a PCB
    Use the correct IC components to avoid design errors that will affect the design footprint.

    2. Misaligning the Address Bus

    During my early years as a designer, high-density memory requirements meant using parallel Flash memory or Static Random Access Memory (SRAM). I had to deal with up to 23 bits of address and 8 bits of data signals. A mistake in matching the address pins of the microcontroller to the memory components could result in an unusable prototype or spending a couple of days cutting off and rewiring the signals with jumper wires. To avoid this, I had to fully understand the addressing bus of the microprocessor and how each memory chip should be connected.

    3. Bad Ground Plane Design

    The effect of a proper ground plane design may not be obvious in simple digital circuits. But you may have a batch of populated, but unacceptable circuit boards if you ignore the ground plane best practices for analog or mixed circuit designs. This can cause interference and cross-talk, making it necessary to quickly produce a better design.

    While I’m lucky enough to have salvaged PCBs with bad ground connections, I now ensure that future designs adhere to proper ground plane designs. Remember to separate analog and digital grounds by a single point when it is appropriate and consider the current flow path.

    4. Incorrect Mounting Holes

    Mounting holes can be helpful for reducing electromagnetic interference (EMI). However, if your mounting hole coordinates are off then your well functioning board will not be secured to its casing. Make sure that your coordinates are exact, otherwise there might not be a clear path for to secure your screw.

    For designs where the Printed Circuit Board is mounted to an enclosure, it is vital to start the PCB layout with the mounting holes placed on the right coordinate before populating other components.

    Worker drilling a hole
    Drilling won’t help when you get the hole position wrong in the first place.

    5. Excessive Current Density On Thin Copper

    What could go wrong when you’ve covered all your bases by performing power budget calculations at a subcircuit level? A mistake is failing to consider the total current passing through the primary voltage signal track. Another mistake is failing to provide adequate copper width. These mistakes can result in overheating or, in certain cases, for the conducting copper to totally break apart. The right power budget analysis should give you a clear indication of the required track width. If you’re working with professional PCB design software, like Altium Designer®, you can take advantage of DC drop analysis tools to verify your calculation.

    For users who want professional design software, Altium’s CircuitStudio® is the perfect solution.

    Do you have more questions? Contact an expert at Altium Designer today!


    Check out Altium in action...

    Powerful PCB Design

    most recent articles

    Back to Home