Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions

    World-Renowned Technology for Embedded Systems Development

  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience


    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    PCB Mountable Connectors: SMD vs. Through-hole

    Zachariah Peterson
    |  April 30, 2020
    PCB Mountable Connectors: SMD vs. Through-hole

    When I designed some of my first boards, I was always working at DC or low speed, and any signal integrity problems from my connectors were an afterthought. These initial boards were for low frequency measurements of an electrochemical sensor. The only circuitry involved was a low-pass filter circuit with through-hole passives, a PCB mountable connector for a lab-grade power supply, and a parallel connection to an SMU. After learning the finer points of signal integrity, those early boards seem so simple in retrospect.

    Selecting a connector is as much an art as it is a science. The artistic side is all about aesthetics and satisfying clearances, while the scientific side is all about signal integrity. For PCB mountable connectors, you’ll need to choose between surface-mounted or through-hole connectors, and you’ll need to consider how each type affects signal integrity in your application. Here’s what you need to think about beyond the standard connector specifications.

    Through-hole vs. SMD PCB Mountable Connectors

    There is already plenty to consider when searching for PCB mountable connectors. To learn more about the basic electrical specifications for connectors, take a look at this article by Dave Young.

    In addition to the points mentioned in the aforementioned article, you’ll need to consider a few important points relating to signal integrity and assembly. Regarding assembly, through-hole connectors are preferred when the connector will be mechanically stronger than SMD solder points. If the connector will be plugged and unplugged repeatedly (e.g., a power jack), then you should use a through-hole connector as its lifetime will be longer.

    Through-hole and SMD PCB mountable connectors
    Through-hole (left) and surface-mount (right)

    Regarding signal integrity, the signal bandwidth will be the primary determinant of things like structural insertion loss/return loss at the connector. This will set the -3 dB frequency in the insertion loss spectrum, which effectively determines the usable bandwidth. There are two other important points to consider with respect to signal integrity...

    Pay Attention to Rise Time

    Just like transmission lines on a PCB, connectors will have an electrical length that determines when their impedance becomes important for termination. At low frequencies, the connector impedance is not so important as its electrical length is quite long, and we can ignore any impedance mismatch between the connector and its trace. The connector’s electrical length is determined in the same way as the transmission line critical length.

    When working at high frequencies (e.g., a few GHz or higher), impedance matching becomes important. For this reason, connectors for high speed/high-frequency applications are designed to have specific impedances (e.g., SMA connectors with 50 Ohm impedance) or termination blocks (e.g., BNC connectors for arbitrary impedance matching).

    Pay Attention to Data Rate

    Don’t equate data rate and bandwidth when searching for connectors. PCB mountable connectors intended for digital systems are rated for specific data rates. Be careful with converting a data throughput to a signal bandwidth, as the two are not equivalent. For binary signalling, the simple way to convert between bandwidth (B) and data rate (D) is to use the approximation D = 2B. In reality, the data rate can be much higher than double the bandwidth thanks to the use of multi-level signaling.

    What About Stubs in Through-hole PCB Mountable Connectors?

    If you’re working with through-hole PCB mountable connectors, the through-hole connection can stick out below the connecting trace, in which case the connector shaft can act like a stub. This creates the same effects as a stub on any other transmission line, leading to reflections due to impedance mismatching or resonances in the stub structure. I’ve seen talk on a few forums discussing the possibility of backdrilling connector stubs, but there are simpler (and cheaper) solutions than dealing connector stubs.

    Connector Placement

    A standard way to place a connector is to place a through-hole connector on the opposite side of the trace to which its connecting shaft will be soldered. The connection is provided by a through-hole via. In this case, the connection is like a very short transmission line rather than a stub, so it will not have an effect on impedance matching at low rise times. Once you get above WiFi frequencies, you’ll need to worry about the impedance of the through-hole connection. At such high frequencies, just use an edge-mount connector.

    SMD Trace Connection with Through-hole Ground Stakes

    Some connectors have through-hole ground stakes to provide mechanical stability, but the center conductor is end-launched or surface-mounted. This is a good way to eliminate a stub while providing mechanical stability. An example of a 26.5 GHz SMA connector is shown below.

    End launch SMA PCB mountable connectors
    26.5 GHz SMA connector with through-hole ground stakes and end-launch solder point.

    Use Shorter Through-hole Connectors

    Simply changing the design to accommodate a through-hole connector with smaller stubs is one good solution. For something like an SMA connector, you won’t have much choice unless you switch to an edge-mount or surface-mount connector. You might be able to see some cost savings in the process, but you may have to sacrifice space. As a designer, it’s up to you to balance the various requirements around connectors, especially when you consider your need to interface with an external system.

    The component management and layout features in Altium Designer® give you the tools you need to find, place, and route connectors in your PCB layout. You’ll also have the tools you need to simulate interconnect behavior directly from your layout data thanks to Altium Designer’s integrated electromagnetic field solver from Simbeor. All these features are accessible in a single design environment, which helps you remain productive and get to market quickly.

    Now you can download a free trial of Altium Designer and learn more about the industry’s best layout, simulation, and production planning tools. Talk to an Altium expert today to learn more.

    About Author

    About Author

    Zachariah Peterson has an extensive technical background in academia and industry. He currently provides research, design, and marketing services to electronics companies. Prior to working in the PCB industry, he taught at Portland State University. He conducted his Physics M.S. research on chemisorptive gas sensors and his Applied Physics Ph.D. research on random laser theory and stability. His background in scientific research spans topics in nanoparticle lasers, electronic and optoelectronic semiconductor devices, environmental sensing and monitoring systems, and financial analytics. His work has been published in over a dozen peer-reviewed journals and conference proceedings, and he has written hundreds of technical blogs on PCB design for a number of companies. Zachariah currently works with other companies in the electronics industry providing design, research, and marketing services. He is a member of IEEE Photonics Society and the American Physical Society, and he currently serves on the INCITS Quantum Computing Technical Advisory Committee.

    most recent articles

    Back to Home