Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Power Nets Management: Circuit Board Best Practices

    Marc Depret
    |  February 21, 2017

    Graphic depicting power input and output

    A recent BugCrunch item (Power input vs output) raised the long standing issue of power management in Altium Designer®. PCB fabrication can be a complicated process when considering all of the items that go into it. Between the vias, solder mask, and solder, things can get messy. To ensure we are all on the same page, I have some opinions on PCB assembly before work gets started.

    As always, I will be very interested in your thoughts and comments. My aim is to make sure that what we do with regards to this is ultimately useful in real life.

    First, let me describe the problem as I see it and how I think it should be addressed.

    In Altium Designer today, power pins are generally used to indicate a user of power. Power pins can be treated differently from other pins at ERC time.

    However, it is not possible to easily identify and manage complete power distribution systems.

    Consequently, a greater level of care is required to avoid fatal errors like power starved components or shorts (which I am sure keep many up at night).

    At the PCB design level, the set of nets that distribute power constitutes a ‘power network’. Similarly, the set of nets that collect current to ground constitutes another ‘power network’.

    Within each of these power networks, a unique point connects to external power resources (either a power source that provides power, or a connection to ground). The net that is connected to this point is truly a power net.

    Also within each of these power networks, a number of (current limiting resistors, net-ties, fuses, etc.) are ‘see-through’ components that, from the point of view of the whole network, are only a connection (though a connection that bears certain required characteristics) joining one net to another PCB designer.

    The following is an abstract representation of such power-network at the printed circuit board level.

    In the drawing above, the trace nets were drawn in red, and the nets within the red box constitute a whole power network. Within this network, a power net directive identifies the net ‘Main PWR’ as the unique net through which power is actually delivered.

    The nets were drawn in blue, and the PCB layout power nets within the blue box would constitute another whole power network. Within this network, a power net directive identifies the net ‘Main GND’ as the unique net that is actually connected to the ground.

    In each power network, only one trace net can be identified as a power net on the printed circuit board. Also, each net containing power-related objects should be part of a power network.

    In the schematics of printed circuit board projects, a new directive will be available, called ‘Power net directive’. When placed on a given net, it will identify it as the unique net (within a power network) that connects to external power resources.

    This new directive can look like this to be easily identified.

    Also, a new schematic object will be introduced, called “Part See-Through”.

    It will be placed by choosing two pins (from the same part) hotspots, and it will link them.

    Its graphical representation will be something similar to this (this was drawn using the line and elliptical arc objects).

    Part see-through’s color, thickness, line style (full or dotted line) and style (arc or line) will be controllable and determine their graphical aspect. Upon placement, part see-thoughs will be automatically ‘unionized’ with the part they target, so they can be easily moved together.

    In effect, the role of a part see-through is to join two nets in a ‘group of two nets’. Consequently, a group of part see-throughs, used in combination with a power net directive will define a whole power network.

    Note that net ties components will be entirely see-through by default.

    All standard editing and management system (Dialog, Inspector, List, Queries, parametrization for scripts) should support these new objects and fields.

    Based on these elements, some intelligence about a power network can be gathered by the system, and reported in a useful way.

    New compilation errors can indicate incoherent situations which could lead to errors in the manufactured board

    • Missing power net directive on PCB layout power nets.
    • Power net directive conflict on power network.
    • Missing power pin on power net.
    • Starved local power net.

    Also, power to input pin errors and input pins without a driver errors can be more intelligently handled in the case of pull-ups or pull-downs: if the nets involved are part of a properly declared power network, these errors can be suppressed.

    Also net classes can be generated based on declared power networks.

    Finally power networks can be precisely described in reports formatted for this purpose.

    A power networks report will contain information about:

    • The list of nets involved in a given power network
    • The list of components and their see-through pin pairs involved in the power network
    • The details of the power net of a given power network.
    • The list of the whole network ‘boundary pins’.

    In the future, this intelligence can also be put to good use first to improve the schematic representation (through automatic wire coloring based on power networks), but also most importantly at the PCB layout level, to easily identify and manage power networks. Part see-throughs could also be used for other purposes, like managing the length of signal nets that contain dampening resistors.

    So, this is my perspective on this problem at this stage. I am certain that some bits are missing or out of place.

    For instance, I am particularly interested in your feedback concerning the graphical representation of part see-through and power net directives, as well as the new compilation errors and the reports.

    There might be also other useful ways this information can be used, that I have not thought about.

    Finally I am a bit unsure about the term ‘Power net’ (particularly in ‘power net directive’). It generally serves the purpose, but I find it is lacking a bit of ‘spice’. If you have any better suggestion, please put them forward!

    In advance, thank you for your involvement with this issue - I value it greatly.

    Please post your comments here.

    About Author

    About Author

    Biography

    most recent articles

    Back to Home