Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Preventing Critical PCB Contamination: There Goes the Boom

    December 18, 2017

    Chemicals in a fume hood

    Ensuring chemical compatibility isn’t always as straightforward as avoiding throwing oil on a fire. When I was an undergrad, I worked in a lab with a heavy emphasis on etching. Processing steps use a range of chemicals, and sometimes these chemicals would not be compatible. One day, a student coworker of mine was hearing weird sounds while etching. After a few minutes, he pulled the fume hood shut and encountered a small explosion from incompatible chemical agents. Thankfully he wasn’t hurt; however, several weeks of work were ruined all because he must have left a speck of something on his wafer between processing runs.

    While contamination doesn’t always have as dramatic of a consequence as an explosion, they almost always have adverse and frustrating effects. On PCBs, contamination usually is more subtle—impairing PCB functioning, damaging insulation, and causing shortages—the end result is still just as unfortunate for your hard work. Knowing what contamination is and how it comes about is the first step to avoiding it in your future processing and designing.

    Effects of Contamination

    Contamination just sounds bad, but what does it mean for your PCB? It depends on the contaminant, but generally, it degrades elements enough to impair functioning. Electrical issues are the most , with corrosion damaging insulation and conductors. This might result in power supply loss, failure, or even shortages. While you can check your power delivery network for damage, it is best to do what you can to avoid contamination damages first.

    Electrochemical migration is one of the biggest concerns, though. When ions are left on your board, usually by an etchant or other chemicals, an electric potential can cause “reverse plating” that pulls metal away from where you want, and redeposits new “traces”—think of them like PCB gremlins only there to cause you trouble and strife in their tiny, damaging forms. These little traces (called dendrites) create bridges that make shorts all over the PCB. They also burn off and reform frequently, so they are difficult to track down and diagnose.

    Contamination on a PCB

    Contamination comes from anything in the environment that is additional and should have already been cleaned off, from skin oils to remains of solutions. Depending on the type of contamination, and where it happens, a variety of issues can arise. The most is degradation and accelerated deterioration of metalized surfaces, polymers, and masks. The areas around wire bond interconnects are especially vulnerable. Some other process steps which are areas for contaminants are as follows:

    Solder Paste Processing: The solder paste applied to the board can also get contaminated. The solder paste itself should be fine if it’s purchased from a reputable supplier, but contamination can get into the paste during the application and reflow process. The stencil printer and PCB finish are also potential sources for picking up and spreading contamination to your solder joints. Residue from flux can also be left on the PCB and function as a contaminant. Any impurity or foreign material is especially problematic for solder because it can cause tin whiskers, which will create electrical shorts between solder joints or into traces.

    Etchant and Chemicals: If you look into PCB manufacturing processes, there are a variety of acids and potentially damaging chemicals that get used during processing. Etching is an obvious source of acids, but flux, electrolytic solutions, and water-soluble soldering can all leave chemical residue on the board after their application and use. After chemicals are used for any process, the board needs to be cleaned to ensure that no residue remains on the board to contaminate the next stage of manufacturing.

    PCB with smoking components
    Some contaminants will just burn off the board, but it’s hard to tell how bad it is when your PCB is smoking.

    Prevention

    Preventing contamination is one of the best practices for you and your PCB design. Unfortunately, humans are a source of contamination, with skin cells and hair landing on boards throughout manufacturing, especially if they aren’t in a clean room. Human handling also leaves oil from skin and cross-contaminated sources on PCBs which are particularly difficult to remove. Taking precautions to ensure that your skin or hair does not contaminate the board, and by processing your product in a clean environment is a good first step for avoiding these contaminations.

    Making sure your manufacturer also has a clean production environment with strong process controls is the second step to prevent contamination. Verify the quality of materials being used, especially solder masks, and solders that contain flux. Some manufacturers will also test for chemical residue during processing. The most method is to submerge a sample board in solution, then measure the ionic change in the solution as chemicals dissolve off the PCB. You can learn more about the specific tolerances for contamination in the standard IPC-TM-650 Method 2-3-25 for ionic cleanliness if you are having chemical residue issues.

    Cleaning a computer motherboard in a bucket of water
    PCBs need to be cleaned between chemical applications, although a hose isn’t always the right approach.

    Contamination on your PCB can have disastrous consequences for your work, and waste valuable time and money. But with proper care and processing management, you can take preventative measures to ensure that PCB contamination plays as little of an influencing factor in your design manufacturing as possible. Still, it’s best to avoid problems up front by using good tools and processes, starting with your design software.

    For smarter communication with manufacturers regarding your component suppliers, use Altium’s CircuitStudio® software and make sure your work goes down with the good kind of bang. If you want to talk avoiding contamination of your PCBs further, consider talking to an expert at Altium now.

    most recent articles

    Back to Home