Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    SpaceX to Launch Modular Falcon Rocket with Reused Engines

    Altium Designer
    |  March 29, 2017

    Modern rockets and spacecrafts

    Modular, reusable design is a design methodology that demands serious consideration. SpaceX have put the associated advantages to work with their Falcon family of spacecraft. The Falcon Heavy long-range heavy payload rocket, their latest effort, is built from existing Falcon models. Moreover, the Falcon rockets are engineered to land in a controlled manner, so that they can be reused for future missions. In their next mission, SpaceX will launch a Falcon - and land it - equipped with a reused engine. If successful, it will be another first for SpaceX, a name associated with pushing the limits of space exploration. What can we learn from their design to launch?

    When I was a child I loved to play with Legos. You could build almost everything with them: skyscrapers, spaceships, rockets, cars, theme parks, etc. The beauty of Legos was that even the finished product was still a “part” that could be added on and extended. Once, when taking apart a fighter jet I built, I realized I could just turn the model into something else. Since Legos are entirely modular, there was nothing stopping me from this. Before long, my fighter jet had turned into a Space Shuttle.

    Lego’s might be a children’s toy, but there’s nothing juvenile about a modular design approach. In fact, SpaceX applies this design methodology to great effect. Their current engineering goal is to create a series of scalable, reusable space vehicles capable of heavy payloads and long mission ranges. The Falcon family of rockets is the most visible of these efforts to create what you might call the “Lego” of spacecraft: a simplified and modular design. How does this work in practice?

    Kid surrounded by Legos
    Legos are more than just a toy. SpaceX is applying the same concepts in their reusable, modular rockets.

    Falcon Heavy: Legos on Steroids

    The Falcon Heavy is the most recent focus of development, and fully emblematic of the Lego approach. The design brief is ambitious: interplanetary mission ranges and a “super-heavy” payload exceeding 100,000 lbs. It features two “strap-on” style booster stages connected to a central core rocket, which is the older Falcon 9 vehicle. Each section, including the two-stage Falcon 9 core, uses a body design with a standardized manufacturing approach. Aluminum alloys, along with effective welding techniques, are used to ensure high strength while simplifying the process steps for the rocket’s in-house construction. More so, each section of the Falcon Heavy uses the same set of nine “Merlin 1D” takeoff engines, flight navigation, and control computers. All told, this means that SpaceX can rapidly build the Falcon Heavy or other models using the same production approach. For example, building a Falcon Heavy from Falcon 9 spares whenever space missions call for it. Ideally, this culminates in the ultimate Lego strategy: constructing the Falcon Heavy from the boosters and core sections used on previous missions.

    USA rocket carrier
    The Falcon Heavy rocket: Two booster sections either side strapped to a core section, shared with other Falcon models.

    Build Them Up, Break Them Down

    It might seem like I glossed over an important fact: for a Falcon Heavy to be built out of past mission hardware, those “space Legos” would need to be recoverable, right? Of course, SpaceX set out to achieve exactly that. The Falcon 9 is engineered with a revolutionary landing system. On the return descent, the rocket rotates 180 degrees and fires its engines to slow the rate of fall. This allows it to reach the landing area in a controlled manner.

    Once it nears the recovery site, the rocket deploys its landing gear and completes a vertical landing. In December of 2015, the Falcon 9 Full Thrust rocket was the first model able to achieve this revolutionary method of recovery. When it launches, the Falcon Heavy will have the same landing system for both the main section and the strap-on boosters. This means that a Falcon 9 can be built for shorter missions and then upgraded to a Falcon Heavy when commercial demand calls for it. The era of the disposable spacecraft - perceived as a “cost of doing business” - is over.

    Modern rockets and spacecrafts
    SpaceX are building a family of rockets using engines and fuselage sections. The falcon heavy is the most recent effort.

    Falcon 9 Takes Off in a Historic Launch

    Vertically landing a rocket is an outstanding accomplishment and a key milestone on the road to the Falcon Heavy’s success. That said, there’s more to it than just landing the rocket. The engines, structure, and control computers need to keep working for future missions. Your Legos didn’t lose their integrity when you took them apart and neither should the Falcon rockets, this is design to launch at its very best.

    Thursday, March 30th, SpaceX is putting a Falcon 9 rocket to this ultimate test. As part of a routine satellite launching mission, this rocket will launch and land with a booster section that was recovered in April of 2016. While it has been refurbished in a four-month program, the booster section’s key components, including the engines, are directly carried over. If successful, this will be an unparalleled feat and a clear indication that modular rockets and their obvious economies are well within reach.

    A modular approach to design has certainly done great things for SpaceX, but it can benefit PCB designers as well. Aside from the obvious benefits of saving time and money, it’s inefficient to research and design the same thing twice. That’s why Altium created , a design package to go along with your PCB software, that lets you pull ECAD design data directly from suppliers and apply it on-demand to your latest project. However, this is more than pulling Legos out of a box. creates a dynamic relationship with your projects and the within. Specifications, documentation, availability and even pricing data are updated live. Talk to the experts at Altium to find out how can streamline the tedious aspects of your workflow and let you focus on creative PCB design so you can design to launch like falcon heavy.

    Check out Altium Designer® in action...

    Modern Interface Experience

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home