Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    What Causes Ringing on a PCB and How to Solve It

    Altium Designer
    |  July 25, 2017

    Digital circuits are particularly sensitive to ringing effects
    Digital circuits are particularly sensitive to ringing effects. Editorial credit: Dikiiy / Shutterstock.com

    In my very first electrical engineering lab, we built a printed circuit to debounce the output of a switch. I remember seeing the original jumpy signal and then the debounced output on the screen of an oscilloscope. I felt a profound sense of unease that something so innocuous in our lives could be so...messy. It’s a good thing that my freshman self didn’t know that was just the beginning of my distress over signal frequency noise and artifacts. Ringing is one of those effects that can be particularly frustrating for product performance.

    What Causes Ringing on a PCB?

    When we’re talking about Printed Circuit Boards, or other electronic systems, ringing is a voltage or current output that oscillates like a ripple on a pond when it’s seen on an oscilloscope. The oscillation is a response to a sudden change in the input signal, like turning it on or switching.

    The oscillation often takes the output signal frequency out of tolerance on both the high and low end, and gradually smoothes out. The time it takes for the oscillations to fall within a tolerable error range is called the settling time.

    Because of the characteristic shape of the output signal, ringing is sometimes called “ripple.” However, ripple usually refers more specifically to output when using AC switched power supplies, if the supply doesn’t properly or adequately suppress the AC waveform.

    What causes ringing in cross-linking agents?

    The source of ringing, besides power supplies, depends on whether your traces are “long” or short. A rule of thumb is that traces are considered “long” if the round trip propagation time (to the load and back) is comparable to the signal rise time in printed circuits. If you happen to be working with striplines or microstrips, it’s a little more complicated and I recommend Glen Dash’s page as a starting point for line length and minimizing transmission line effects like ringing.

    Back to long and short traces… If you have a short trace, ringing is caused by parasitic inductance and capacitance. A pulse or sudden change in the input causes the parasitic components to resonate at their characteristic frequency domain, creating the ringing effect in your output. On long traces, the cause of ringing is more likely to be signal frequency reflection from an impedance mismatch.

    Testing PCB signal outputs.
    Signal noise caused me a disproportionate amount of angst as an undergraduate, but it can have catastrophic consequences once you’re in industry.

    How does ringing affect my multilayer board?

    If you don’t suffer an existential crisis because of noisy oscilloscope, that’s great. You’ll have much lower therapy bills. Even so, ringing can have some negative impacts on your life and product design.

    Increased EMI: Ringing can, and often does, produce noise and interference. That EMI can radiate or conduct across your board, with all the associated performance problems.

    Increased current flow: Ringing causes increased current to flow through your circuit. Not only does that cause a corresponding increase in power consumed by your product (and shorter battery life), but the components on your board will experience additional, unexpected heating. That can decrease their functionality and lifetime.

    Decreased performance: Along with the accumulated performance drops from the increased current and heating, ringing decreases performance across a range of metrics. Because you have a lag in output due to the settling time, the responsivity of your printed circuit will drop. The resolution of your outputs will also be much poorer.

    If you have digital circuits, ringing is especially damaging. You still have all the problems we’ve covered, and the threshold is much lower. Combine this with any supply rail noise, and you’re likely to have errors and corrupted data.

    Audible feedback: A special case of ringing occurs in audio and video applications. Ripple occurs in the audible range, and will be heard in your output. It also creates visible artifacts in video displays.

    Sound card and jacks.
    In audio and video applications, ringing can audibly affect your outputs.

    How do I prevent ringing?

    Ringing can vary from annoying to catastrophic in your system performance. Optimizing your design makes a huge difference in the performance and output. First, you want to reduce parasitic inductance and capacitance. You should minimize node lengths, especially around power stage components on your board. You also want to use impedance matching to minimize any signal reflection. Impedance matching varies with your application and I recommend starting with the Texas Instruments technical articles for very specific advice on a range of applications.

    While it’s impossible for any existing program to check for every source of possible interference, having a good one can offload a lot of the work. That leaves you free to deal with the most important challenges, instead of playing design whack-a-mole as you optimize all the parameters of your board. Altium makes some of the best PCB software, like Altium Designer®, and has tools for taking a lot of that error checking load off your shoulders. This gives you time to contemplate the philosophical implications of noisy circuits. Or you can just get on with your life.

    Have a question about ringing? Contact an expert at Altium.

     

    Check out Altium in action...

    Powerful PCB Design

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home