Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    PCB CAD Design for Manufacturing Guidelines: How Trace Routing Can Affect Solder Joints

    Altium Designer
    |  November 9, 2017
    Picture of a jazz band on stage
    Editorial credit: Aija Lehtonen / Shutterstock.com

    A couple of weeks ago I attended a concert that was a tribute to the big band leader Stan Kenton. I love big band jazz for many reasons, one of which is the configuration of musicians and instruments in the band. There are usually around 15 to 20 musicians on different instruments, and everyone plays a different part. If just one person makes a mistake, it can ruin the balance of the number that was so carefully arranged by the composer.

    The importance of each member of the band playing harmoniously together reminded me of the importance of a correctly manufactured printed circuit board. If just one part isn’t soldered correctly, the finished circuit board may have intermittent failures, or perhaps not work at all. Just as a saxophone playing a sour note can ruin the whole number, a bad solder joint can ruin the entire board. Fortunately, design for manufacturing (DFM) rules can help you to avoid hitting sour solder joints on your circuit board.

    One area where DFM rules can help your board may come as a surprise. How you route traces on your PCB can have a direct effect on solder problems, and DFM rules offer some guidance there. Take a look with me now at how trace routing can cause problems like cold solder joints or tombstoning so that you will know what to avoid in the future.

    Acute angle traces

    The first problem that we’ll look at is acute angle traces. Although this situation doesn’t specifically lead to a solder problem, it is a routing problem noted in PCB DFM guidelines.

    Acute angles in traces are traces which have corners that are greater than 90 degrees. This causes the trace to come back on itself. The wedge that is created by the acute trace angle can trap acidic chemicals during the fabrication process. These trapped chemicals don’t always get cleaned up as they should during the cleaning phase of fabrication and will further eat away at the trace. This can eventually result in the trace breaking or causing intermittent connections.

    Trace routing on a green PCB
    Trace routing on a PCB

    Tombstoning parts due to trace widths

    Tombstoning happens when a small two pin part, such as a surface mount resistor, stands up on end on one of its pads during soldering. This results from a heating imbalance between the two pads during solder reflow. Whichever side melts first pulls the part towards that side, and causes the tombstoning effect.

    One of the factors that can cause this heating imbalance is using different sized traces on the two pads. The wider the trace, the longer it will take for the pad that it is connected to heat up. If one pad of the part has a very narrow trace, and the other pad has a very wide trace, you will likely have a solder reflow imbalance and one pad will melt and reflow before the other one.

    Often electrical engineering will want a power trace that is too wide for the manufacturer to reliably solder. PCB design for manufacturing guidelines have recommendations for the minimum and maximum trace widths to use on different sized parts, but that might not solve your problem. The key for you is to balance the requirements of both electrical engineering and manufacturing, and come to a common agreement between the two. In this way you can meet the needs of both sides on your design.

    3D close up of  board against glowing blue background
    DFM rules can help you to design out manufacturing problems on your board

    Cold solder joints

    Another problem that can happen when routing thicker traces is the creation of a cold solder joint. A cold solder joint is one where the solder has not reflowed correctly to make a good connection, or that the solder has pulled away from the connection. When routing a thick trace out of a pad, the thick trace size may end up pulling the solder off of the pad where it is needed to make the connection to the part.

    The solution is to use traces widths that are smaller than the pad size. Some DFM guidelines recommend a trace no wider than 0.010 mils, although this again must be worked out to balance the needs of both electrical and mechanical engineering.

    There is a lot more to PCB design for manufacturing guidelines than the trace routing recommendations that we have given you here. DFM guidelines will also help you with proper component placement techniques, footprint sizes, and other aspects of your design. This will ultimately help your design to be manufactured with as few errors as possible. A circuit board that is error free during manufacturing is a reflection of a good and solid design, kind of like hearing the Stan Kenton band playing an error free rendition of Intermission.

    PCB design software, like Altium Designer, has advanced routing capabilities and other features to better help you to design according to your DFM rules. This will help you to deliver a design that is DFM compliant to your manufacturer the first time.

    Would you like to find out more about how Altium can help you with your next design to assure its DFM compliancy? Talk to an expert at Altium.

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home