Free Trials

Download a free trial to find out which Altium software best suits your needs

Altium Online Store

Buy any Altium Products with few clicks or send us your quote to contact our sales


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Altium Online Store

    Buy any Altium Products with few clicks or send us your quote to contact our sales


    Take a look at what download options are available to best suit your needs

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Advantages of Flexible Circuits for Space Applications

    Altium Designer
    |  July 12, 2017

    planets in space

    Sometimes people ask my why space travel is important. The answer seems obvious to me every night when I go to sleep. My pillow is made out of memory foam, which was developed by NASA. Their research efforts for space exploration have led to a host of other important discoveries and gadgets that we all benefit from today. Another useful technology that was originally developed for the aerospace industry is a flex circuit. Rigid flex and fully flexible PCBs have several advantages over traditional PCBs when it comes to flight around and Earth and far above it. Things like reduced weight and volume increased reliability, and more innovative design make flexible circuits a great choice for infinity and beyond. One particular material that highlights all of these advantages is Kapton®.

    Lightweight and Low Volume

    You might not think weight matters much in regards to space exploration. Everything is essentially weightless up there after all, right? Unfortunately, rockets and their payloads still experience gravity during liftoff. Carrying something from the ground into orbit is one of the most energy intensive of the whole process. A flex circuit low mass and take up less space than traditional PCBs, making them perfect for aerospace.

    A flexible circuit is naturally lighter than a normal board. Instead of using a thick rigid substrate they are mounted on a thin film. Substrate weight savings are compounded as layers are added, which can result in up to 75% weight reduction. That may not seem significant, but when you’ve to pay for your own rocket fuel, every ounce matters.

    Not only is a flex circuit lighter, they’re also smaller. Obviously a thin film takes up less space than a thick substrate, but the main volume savings come from flexibility. Whereas a traditional board needs a set amount of 3D space, a flexible PCB can be squeezed or folded into nooks and crannies. They can also be bent into unique 3D shapes and fill unused space. With enough creativity, you can save up to 60% space when compared to normal boards. Size matters because a larger payload means a larger, and heavier, launch vehicle.

    Rocket launching
    You don’t want to be carrying any extra weight during launch.


    When designing boards for space, reliability is hugely important. NASA launched Voyager One 36 years ago, and it’s still flying. Your circuits need to be pretty trustworthy if they’re going to be flying through space for 36 years. A flexible circuit board can withstand more dynamic forces than a traditional board, and they eliminate high failure interconnection points.

    Spacecraft are subjected to all kinds of dynamic forces, primarily during takeoff.  Dynamic forces are the bane of traditional boards, with vibrations causing up to 20% of failures. Flexible and rigid flex boards are made to twist during operation and can flex thousands of times before failing. This will help flexible boards bend instead of break and keep working in harsh conditions.

    Connections like solder joints, crimps, etc. are a major risk for failure as well. These attachments can also be broken by dynamic forces. Having a flexible circuit removes this risk by eliminating connections. Most of the connections on flexible boards are made within the substrate. For a connection to fail, the whole printed circuit board would have to fail. Thus, flexible circuits almost entirely remove a point of failure for your board.

    Satellite orbiting earth
    Flexible circuits are perfect for deployable parts.


    The vacuum of space is a daunting place full of difficult challenges. Engineers need versatile components in order to overcome those obstacles. Flexible circuits provide physical adaptability that can allow designers to implement odd shapes and extensible on their spacecraft.

    Sometimes it’s not convenient to jam a large rigid rectangle into a small area in a spacecraft. Flexible circuits can conform to whatever surfaces they’re mounted on. This means they can be mounted wherever they’re needed. Instead of running wires out from a central unit to far-flung sensor arrays, you could mount your circuit right next to the arrays.

    Flexibility also comes in handy when you want to implement extensible parts. We’ve all seen things like deployable solar arrays on satellites. Just like dynamic forces and vibration can weaken traditional boards, extending and retracting can cause wear and tear on conventional wires and PCBs. You would usually be taking a risk by incorporating that kind of apparatus. However, since flexible circuits are made for just that kind of motion, you can use expendable equipment without fear.


    Flexible circuits are made out of many materials, but one, in particular, is already widely used for space applications. Kapton® is a thin polyimide film that has already been used on multiple space missions for everything from heaters to solar cells.

    One reason Kapton® is often chosen is because of its light weight. This has made it a primary choice for everything from cable insulation in rockets to heaters on rovers. Kapton® is also used because of its mechanical properties and vibration resistance. These help it keep things like solar panels and optical sensors safe during operation. This material exhibits all of the qualities that make flexible circuits useful for space travel, so it’s no surprise that so many space missions use it.

    Whether you’re sending all the way to Mars, or somewhere closer like the International Space Station, you want to be sure your payload arrives at its final destination. Flexible circuitry will help minimize your spacecraft’s size and get it off the ground. It will also improve reliability, and give you more options when it comes to design.

    Now that you understand why you should use flexible circuits, you need some PCB design software to help you make them. Lucky for you, Altium Designer® has tools that can make flexible design easy. Altium Designer will help you get your spacecraft off the ground in no time.

    Have more questions about flexible circuits? Call an expert at Altium Designer.

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home