Banner image: The inductance and capacitance of a planar transformer design can be extracted from an ECAD file using the COMSOL software. Image credit: COMSOL.
By far, the bulkiest through-hole component you can place on your PCB is a transformer. The only comparably large components I can think at the moment of our large high voltage capacitors, wire-wound inductors, some connectors, and heatsinks. Even small transformers take up more space than the majority of integrated circuits, and power system designers need to carefully consider the size of these components when creating a PCB layout.
Through-hole mountable transformers can sit very tall on the PCB, so it helps to have an alternative that has a low profile. A planar transformer is one option that can be through-hole mounted to the board, or it can be integrated directly into your PCB. Both options give you a low-profile transformer that could handle a range of current values. Here’s how you can create a planar transformer design in a PCB layout.
A planar transformer in PCB design uses flat windings that can be placed directly on a PCB. Contrast this with a toroidal transformer, laminated core transformer, or other common transformers, where copper wire is used to form the windings around the transformer core. Using a PCB with traces to form the windings creates the planar form factor. Thanks to the form factor and materials used in the transformer, it has some advantages compared to other transformers:
There are also some tradeoffs to consider if you’re designing a custom planar transformer, or you want to integrate a planar transformer into your PCB layout:
As was mentioned above, there are two ways to build a planar transformer: as its own component or integrated into a larger PCB layout. Both types of planar transformer follow the same process. The example layout below shows how a planar transformer is formed by wrapping the transformer core material around the PCB layout using cutouts. The two sides of the core can be screwed together or secured with a small clip, as shown above.
In the example design below, the traces in each layer are routed in the desired shape of the coils, as well as the input/output ports for each winding. You can easily put multiple primary/secondary windings in the layout. Although this is normally done on its own component, you could also do this on the same board as the rest of your components, which gives you a fully integrated package.
In addition to the points mentioned above, pay attention to these two points when designing a planar transformer:
There is a delicate balance involved in designing these components. We can’t make the current too large as this requires wider traces; this then increases the capacitive coupling, which limits the usable frequency. We also can’t have large step-down values; commercial planar transformers can have ~6:1 turns ratio, although the inductance can be quite high and reach up to ~1 mH levels.
Routing the trace coils with curved shape or other geometry requires arc routing or any-angle routing to place PCB traces accurately. Then there’s the matter of heat dissipation from the transformer going back into the substrate. There is plenty to consider when designing these components, but you can get the job done with the right PCB design tools.
If you want to place a planar transformer in a PCB design, try using the complete set of CAD tools in Altium Designer®. The layout, routing, and manufacturing tools are ideal for producing complex designs, including designs with planar transformers. When you’ve finished your design, and you want to share your project, the Altium 365® platform makes it easy to collaborate with other designers.
We have only scratched the surface of what is possible to do with Altium Designer on Altium 365. You can check the product page for a more in-depth feature description or one of the On-Demand Webinars.