Watching your old town grow up can be a lot like watching your favorite television shows ending, or watching a sequel years after a good movie was released. The town I grew up in was laid out on a grid with streets so wide you didn’t even have to parallel park downtown. It was a town so small that traffic jams were caused by two people in different cars stopping to talk more often than accidents. When I go back to visit, the town has grown; the wide parking has been converted to an additional driving lane.
Metaphorically, and literally, the town draws a lot more current than it did in my childhood. Traffic jams and accidents are certainly up, but some foresight in the city planning has kept things from getting too messy. Much like a PCB, where proper planning can avoid nasty accidents and unfortunate design failures that plug up traffic and force errors to occur. Proper PCB design isn’t just a matter of putting a traffic cop on a crosswalk, oftentimes in order to ensure that the flow of traffic remains at a tolerable and smooth level, you will need to design far in advance while knowing the power circuits and component connections needed.
Adequate trace routing requires just as much care for your PCB design as city planning. You won’t get traffic crashes or make hundreds of people late to their jobs with inadequate trace routing; however, you will have short circuits. Much like if you have an unnecessarily long traffic light affecting a relatively low traffic road or not having a stop sign as you approach a busy intersection, improper trace routing can affect the quality of solder joints, and traces on internal layers can cause shorts, too. With a strong understanding of trace routing, you’ll be better equipped to design your PCB for the amount of traffic it has coming in.
Trace routing isn’t all red light, yellow light, green light—you know how the yellow light means a dozen different things depending on the driver? That’s more how many factors can influence traces. All of the following factors can influence the likelihood of shorts during manufacturing and operation:
Typically, the drivers who are often cluttering up roads are the ones who haven’t been to the area before. Similarly, the designers who are most likely to have their board short from poor routing practices are the ones who haven’t familiarized themselves with trace routing before. After you know what affects your trace routing, it becomes significantly easier to understand and follow the following practices which will ease your board away from the tempting urge of shortages, and into the more desirable reality of board functionality. Here are some of the best practices I find for trace routing:
Areas with a large number of traces are prone to high defect rates, like more cars causing more accidents. All of the risks of individual traces are compounded, and design compromises are made to fit everything into a tight space. It’s important to plan your layout ahead of time to optimize the location of parts and minimize high-density areas.
If you need high density trace routing, you need to use design tools that can keep up with the performance that you want from your boards. When you need to access an easy-to-use PCB layout tool that includes everything needed to build high-quality manufacturable circuit boards, look no further than CircuitMaker. In addition to easy-to-use PCB design software, all CircuitMaker users have access to a personal workspace on the Altium 365 platform. You can upload and store your design data in the cloud, and you can easily view your projects via your web browser in a secure platform.
Start using CircuitMaker today and stay tuned for the new CircuitMaker Pro from Altium.