See What’s Coming Soon to Altium Designer 24

Setting the new standard in electronics design.

Switching vs Linear Voltage Regulator: What’s the Best Choice for Your Power Management Circuit?

Zachariah Peterson
|  Created: July 22, 2017  |  Updated: January 18, 2021
Switching vs Linear Voltage Regulator

Have you ever had a capacitor explode in front of you? That’s how I started my career in electronics design. I also messed up the power budget calculation for what was initially pitched as a “simple” project. The end result was a PCB prototype with a red hot voltage regulator that was capable of frying an egg...or worse.

Since then, I’ve come to realize that design elegance and sophistication matters little. If you make an error when configuring the power management circuits, your design is virtually useless. Power budget calculations, the temperature of the environment, and, in my case, the choice of core power management component, like a voltage regulator, can make or break your PCB project.

The Function of a Power Supply Management Circuit in an Embedded System

In over a decade of designing embedded systems, I’ve seen microcontrollers evolve by leaps and bounds. They’ve gone from the historic Zilog to the modern Cortex M4 processor. Technology like Bluetooth LE and ZigBee have gone on to further revolutionize the embedded systems industry. However, you’ll always need well-designed power circuitry. Without it, these cool bits of technology are just waiting to melt.

Capacitors aside, you have the voltage regulator, which sits at the heart of all well-designed power circuitry. As the name implies, it provides a stable source of voltage that allows the embedded system to operate in a stable manner. Voltage regulators work by receiving a high voltage input before lowering and stabilizing the voltage to the level that’s required to operate the electronic device.

Before 3.3V components became popular, we were limited to 5V powered microcontrollers (MCUs) and integrated circuits (ICs). LM7805 was a popular part number back then, as it was a simple 5V linear voltage regulator. In fact, its simplicity is quite elegant, making it still a popular choice today. When 3.3V became a mainstream operating voltage, LM1117-33 served as a fairly efficient linear voltage regulator.

The Limitations of Linear Voltage Regulators

There was a period when integrated circuits shifted to accommodate 3.3V, and during this time microcontrollers underwent a phase of rapid evolution. Previously, designers focused on the number of inputs/outputs on a microcontroller. Then they became more interested in the number of integrated features, such as UARTS, Ethernet, USB, and the rapidly increasing processing power. Eventually, the linear voltage regulator was pushed to its limit.

Black aluminum heat sinks

These handy heatsinks cool down linear regulators.

Many people made a rookie mistake when dealing with the linear voltage regulator and accepted the current rating as absolute. This was a major problem because the LM7805 voltage regulator is specified as a 5V, 1.5A. But that doesn’t mean the linear regulator can handle this voltage without wearing down at best, or burning up in the process. At least three more parameters must be considered before selecting a linear voltage regulator.   

The dissipated power level is calculated by considering the difference between the input and output voltage; then you multiply this figure with the load current. If you’re regulating 12V to 5V, and your embedded system consumes 100mA, then the dissipated power will be 0.7W. With this in mind, we should note that the LM7805 linear regulator can operate at temperatures up to 125°C. Beyond this point, you’ll begin to see undesirable events such as melting and burning.

But a typical LM7805 in a TO-220 package has a temperature resistance of 65°C/W. This means that for every 1W, you will see an increase of 65°C on top of the environment’s ambient temperature. In some regions, temperatures average around 35°C, so the LM7805 would be running at 100°C—slightly short of its allowed maximum temperature, yet you have less than 10% of the rated maximum current of 1.5A.

Why Switching the Voltage Regulator Is The Cooler Choice, Literally

The linear voltage regulator’s characteristics made it a less-than-ideal candidate power supply systems with high power requirements since the heat generated could damage the regulator or deteriorate the lifetime of nearby components. This increased interest in the switching regulator. As the name implies, the switching regulator switches the power supply on and off at a very rapid pace to modify output voltage, providing a stable and efficient source of power. The switching regulator can dissipate heat quite effectively, reducing temperatures and minimizing the risk of a literal meltdown.

Graphic saying “Improve Efficiency”
Switching regulators are all about efficiency.

A part that I’ve used is the LM2576, a popular switching regulator that runs at 75% efficiency when regulating at 3.3V. This produces a fraction of the heat that you might see from a comparable linear regulator, making it ideal for applications that need to regulate from a high voltage to a low one. It’s also suitable for embedded systems where you’re routinely running at a high capacity.

Switching vs Linear Voltage Regulators

With all the efficiency that a switching voltage regulator provides, two criteria still prevent it from being the default choice. The cost of the switching regulator and the mandatory passive components. These can be significant, and up 30 times higher than the costs that you’d see with a linear voltage regulator and a couple of capacitors.

Also, the switching regulator requires more passive components. When you have a greater number of passive components, maintenance becomes far more complex. You must ensure that you carefully select the value of your inductors and capacitors, and this also automatically translates into a demand for more space on the PCB.

In short, if you are working on a simple application that doesn’t consume much power, the linear voltage regulator is the logical choice. But if you’re working on a high-powered project or attempting to step down from an industrial voltage of 24VDC to a 3.3V system, then you may want to consider using a switching voltage regulator for your power supply and output voltage needs.

Have questions about power management circuits? Do you need tips and best practices for switching voltage regulator design? Contact an expert PCB designer at Altium Designer now.

About Author

About Author

Zachariah Peterson has an extensive technical background in academia and industry. He currently provides research, design, and marketing services to companies in the electronics industry. Prior to working in the PCB industry, he taught at Portland State University and conducted research on random laser theory, materials, and stability. His background in scientific research spans topics in nanoparticle lasers, electronic and optoelectronic semiconductor devices, environmental sensors, and stochastics. His work has been published in over a dozen peer-reviewed journals and conference proceedings, and he has written 2500+ technical articles on PCB design for a number of companies. He is a member of IEEE Photonics Society, IEEE Electronics Packaging Society, American Physical Society, and the Printed Circuit Engineering Association (PCEA). He previously served as a voting member on the INCITS Quantum Computing Technical Advisory Committee working on technical standards for quantum electronics, and he currently serves on the IEEE P3186 Working Group focused on Port Interface Representing Photonic Signals Using SPICE-class Circuit Simulators.

Related Resources

Related Technical Documentation

Back to Home
Thank you, you are now subscribed to updates.