Dans un article précédent, nous avons examiné les incohérences qui peuvent survenir lors de l'utilisation de différents calculateurs pour calculer l'impédance des pistes microstrip de surface et intégrées. Beaucoup des mêmes problèmes mentionnés dans l'article précédent s'appliquent aux calculateurs d'impédance de stripline. Les striplines symétriques sont plus faciles à traiter que les striplines asymétriques, tant numériquement qu'analytiquement. Ici, nous allons donner une courte comparaison des différentes formules et calculateurs d'impédance pour les striplines symétriques.
Comme c'était le cas pour les calculateurs d'impédance microstrip, les calculateurs d'impédance de stripline ont tendance à s'appuyer soit sur les formules IPC-2141, soit sur les équations de Wadell. On devrait toujours vérifier soigneusement si un calculateur implémente ces équations sous les approximations appropriées. Pour commencer, les symboles utilisés dans les équations de cet article correspondent à la géométrie montrée ci-dessous :
Géométrie de stripline symétrique
De nombreux calculateurs divisent les équations en une série d'approximations pour diverses limites sur les paramètres géométriques dans la figure ci-dessus. Ces équations peuvent être trouvées en utilisant les méthodes de Wadell. Sous des approximations spécifiques (non mutuellement exclusives), les équations suivantes définissent l'impédance d'une stripline :
Équation d'impédance de stripline pour bandes étroites
Pour les striplines larges, l'équation ci-dessus se réduit à l'équation suivante en termes d'un facteur de capacité de franges :
Équation d'impédance de stripline pour bandes larges
La solution ci-dessus est explicitement définie dans les normes IPC-2141. En général, ces équations produisent une erreur d'environ ~1% avec les résultats expérimentaux, ce qui est une précision bien supérieure à celle de l'équation standard de l'IPC pour une ligne de transmission microstrip. C'est un domaine où la norme IPC-2141 utilise définitivement la bonne définition.
Un bon calculateur distinguera automatiquement entre les limites pertinentes et appliquera la bonne équation en fonction de l'entrée de l'utilisateur. D'autres supposeront que l'utilisateur fait référence à une stripline étroite ou large, mais cela ne sera pas explicitement indiqué quant à l'applicabilité du calculateur. Assurez-vous toujours de vérifier si le calculateur définit l'une des deux limites ci-dessus lors du calcul de l'impédance d'une stripline.
Certains calculateurs émulent directement les uns les autres, et pourraient donc contenir les mêmes erreurs typographiques. Il existe d'autres équations qui sont définies pour les calculateurs d'impédance de stripline qui ne sont valables que sous des approximations spécifiques, et elles sont vraiment une réduction des équations montrées ci-dessus. L'opinion de l'auteur est que ces autres équations devraient être évitées.
Une solution alternative dans la limite T = 0 peut être écrite en termes d'intégrales elliptiques de première espèce. Les développeurs intéressés par la création de leurs propres calculateurs de ligne stripline peuvent facilement implémenter un algorithme numérique standard pour évaluer cette intégrale. Les lecteurs intéressés sont renvoyés à l'article original de Cohn sur le sujet pour cette équation.
Un aspect qui n'est souvent pas abordé—tant avec les microstrips qu'avec les striplines qui agissent comme des lignes de transmission—est de savoir si les deux formules sont réellement cohérentes et quelles formules devraient être utilisées. En fait, il n'y a pas vraiment de controverse entre les équations pour l'impédance caractéristique d'une ligne de transmission basée sur l'analyse de circuit et l'impédance définie en termes de la méthode de Wadell. Le problème de l'utilisation de l'équation de la ligne de transmission de l'analyse de circuit vient du calcul des paramètres équivalents dans le modèle de ligne de transmission groupée.
Pour rappel, l'impédance d'une ligne de transmission est liée à l'inductance et à la capacité par unité d'une ligne de transmission. Notez que cela est applicable pour une ligne de transmission microstrip ou stripline. En général, les pertes sont prises en compte car les conducteurs en cuivre ont une certaine petite résistance, et le substrat fournit une certaine conductance résiduelle entre la ligne de transmission et son plan de référence. L'équation de base pour l'impédance en mode simple d'une ligne de transmission avec pertes est montrée ci-dessous.
Équation de l'impédance de la ligne de transmission déterminée à partir de l'analyse de circuit
Cette équation est dérivée d'un modèle de circuit équivalent à éléments concentrés pour une ligne de transmission. Notez que la capacité et l'inductance équivalentes dans cette équation sont liées à la géométrie de la ligne de transmission et aux propriétés matérielles du conducteur et du substrat. Ceci n'est pas explicitement mentionné dans chaque dérivation des équations d'impédance de stripline et microstrip pour plusieurs raisons.
Tout d'abord, le chemin exact du courant dans le plan de retour détermine l'inductance de boucle pour le circuit équivalent, tandis que la distribution transversale du courant dans le plan de référence détermine la capacité. La distribution du courant transversal est également liée à la conductance du substrat. Supposer que la distribution du courant est uniformément répartie dans le plan de référence et que le chemin de retour du courant suit exactement le long du conducteur n'est pas toujours correct. Par conséquent, utiliser une approximation géométrique n'est pas la meilleure manière de calculer la capacité et l'inductance groupées de la ligne de transmission.
Certains calculateurs vous permettront de saisir l'inductance et la capacité équivalentes par unité de longueur, ainsi que la résistance du conducteur, la conductance du substrat et la fréquence du signal lors du calcul de l'impédance d'une ligne de transmission en stripline ou en microstrip. Cependant, ces valeurs ne peuvent pas être connues a priori et nécessitent des mesures précises. Par conséquent, l'approche décrite par Wadell est une méthode plus précise pour calculer l'impédance d'une stripline ou d'un microstrip.
Si vous recherchez une ressource utile pour concevoir des lignes de transmission avec une section transversale rectangulaire ou circulaire, cet article de l'IEEE fournit un bon point de départ et quelques formules simples. Les formules de cet article sont dérivées sous des approximations raisonnables et sont cohérentes avec les résultats expérimentaux dans les PCBs.
Avec la conception à impédance contrôlée haute vitesse et haute fréquence étant si importante et permettant de gagner beaucoup de temps, vous avez besoin d'outils de conception qui vous permettent de définir la bonne équation d'impédance pour votre configuration de stripline. Altium Designer inclut un gestionnaire de pile de couches et un calculateur d'impédance avec une vaste bibliothèque de matériaux de stackup. Vous disposerez des outils nécessaires pour contraindre votre géométrie aux dimensions requises pour contrôler l'impédance dans tout votre PCB.
Si vous êtes intéressé pour en savoir plus sur Altium Designer, vous pouvez nous contacter ou télécharger un essai gratuit et obtenir accès aux meilleurs outils de mise en page, de routage et de simulation de l'industrie. Parlez à un expert Altium dès aujourd'hui pour en savoir plus.