Free Trials

Download a free trial to find out which Altium software best suits your needs

Altium Online Store

Buy any Altium Products with few clicks or send us your quote to contact our sales


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Altium Online Store

    Buy any Altium Products with few clicks or send us your quote to contact our sales


    Take a look at what download options are available to best suit your needs

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    How Copper Foil Roughness Affects Your Signals and Impedance

    Zachariah Peterson
    |  May 5, 2020
    How Copper Foil Roughness Affects Your Signals and Impedance

    The history of engineering, both electrical and mechanical, is littered with approximations that have fallen by the wayside. These approximations worked well for a time and helped advance technology significantly over the decades. However, any model has limits on its applicability, and the typical RLCG transmission line model and frequency-independent impedance equations are no different.

    So what’s the problem with these equations? Senior PCB engineers and manufacturers cite them all the time, making them appear as gospel, but like many complex technical concepts, these models and equations are often communicated without sufficient context. This is where physics rears its ugly head and tells you when a model needs to change if it is to continue being applicable. Copper foil roughness modeling and related transmission line impedance simulations are just one of many areas in which standard models cannot correctly treat signal behavior.

    How Copper Foil Roughness Affects Impedance and Losses

    If you look at the RLGC model for transmission line impedance, you’ll see four parameters that contribute to impedance (all are in their standard units per unit length):

    • R: DC resistance of the transmission line, which depends on the line’s conductivity;
    • L: loop inductance of the transmission line, taken purely as a function of the line geometry;
    • C: total capacitance of the line, also taken as a function of the line geometry;
    • G: conductance of the substrate, meant to model the loss tangent at a specific frequency and any parasitic DC conductance.
    PCB transmission line impedance
    Standard transmission line impedance equation

    One thing that many in the industry will not tell you is this: all these parameters are frequency-dependent, including the resistance term! You’re probably thinking “wait a minute, everyone in my EE101 classes said resistance does not depend on frequency. What gives?”

    I believe it was back in 2014 when the IEEE P802.3bj Task Force was first presented with a proposal to accept a causal model for 100 Gb/s Ethernet PHY interconnects. In this model, the inductance, capacitance, and resistance terms above were modified to include frequency dependence. The capacitance term was modified easily by accounting for dispersion in the substrate. What about the resistance and inductance? This dependence of resistance on frequency arises due to the skin effect in a conductor at high frequencies.

    The skin effect refers to a confinement of current near the surface of a conductor when the current oscillates at high frequency. For a perfectly smooth conductor, the skin effect is marginal until you get up to GHz frequencies. However, in the presence of copper roughness, losses can become considerable within a certain range of frequencies. The skin effect also increases the inductance of the line. The overall effect is a modification in the line impedance from the value predicted in the standard RLGC model.

    Even if you do not consider dispersion in the substrate, dispersion in the equivalent circuit terms will always cause a deviation from the ideal impedance. Once you get deep into the microwave and mmWave regimes, you are forced to account for copper roughness when designing an interconnect.

    Copper foil roughness and impedance in a PCB transmission line
    Real interconnect impedance due to the skin effect and roughness

    If you want to see how to include a copper roughness correction in the above equation with the impedance modeling features in Altium Designer, take a look at this article. Otherwise, keep on reading to learn more about the standard models for copper foil roughness.

    Modeling Copper Foil Roughness and Causality

    Modeling copper foil roughness doesn’t require an integrated electromagnetic field solver. Don’t get me wrong, this will probably give you the most accurate results, but it would definitely be considered overkill. Instead, your design software only needs to include a roughness correction factor in an accepted causal PCB transmission line model. When we say “causal,” we are referring to the type of behavior in which a signal response is not seen until after a driver sends a signal down an interconnect. While this may sound obvious, causality violations in high speed/high frequency signal models are common.

    So why do causality violations occur in PCB interconnect models? For that matter, why do they occur in any other model? This results from incorrect modeling of the relationships between various physical properties. Regarding electronics, if you accept that causality is the correct description of reality, then you can construct relationships between the physical properties of a PCB substrate and conductors using Kramers-Kronig relations for the real and imaginary parts of a physical property.

    If you’re familiar with dispersion in FR4 and other PCB substrates, then you should know about the wideband Debye model or Lorentzian model for describing dispersion. This model is actually derived from the Kramers-Kronig relations between the real and imaginary parts of the substrate dielectric constant:

    Kramers-Kronig equations and copper foil roughness
    Kramers-Kronig relations for the dielectric function of a PCB substrate

    If you know the real part of the dielectric constant at a range of frequencies, then you can calculate the imaginary part, and vice versa. This same technique is applied to copper foil roughness in a PCB. This can get quite mathematically intense and has formed a part of my own research on transmission line optimization. If you want to see how similar Kramers-Kronig relations are used in modeling copper foil roughness, take a look at this article in Signal Integrity Journal.

    Accounting for Copper Foil Roughness in Your PCB Layout

    In the old days, you would have to account for copper roughness manually when designing an interconnect. In other words, you might have to manually account for a roughness correction factor, and then manually add this into the standard RLGC impedance equation. The standard models for including roughness in interconnect impedance calculations are the Hammerstead model and the Cannonball-Huray model. The latter model accounts for roughness in the SEM image below as a cannonball arrangement.

    SEM image of copper foil roughness
    Modeling copper foil roughness with the Cannonball-Huray model
    Top: SEM image showing copper foil roughness [Image source, slide 13]. Bottom: Cannonball-Huray model for copper foil roughness [Image source, page 21].

    The advanced PCB design features in Altium Designer® now incorporate copper roughness into your stackup using the advanced causal methods mentioned above. You won’t need to manually work out the effects of copper foil roughness on each layer. This feature is integrated with the  standard routing tools in Altium Designer, providing highly accurate interconnect characterization and calculations. Take a look at this article to learn more about modeling copper roughness in Altium Designer.

    Now you can download a free trial of Altium Designer and learn more about the industry’s best layout, simulation, and production planning tools. Talk to an Altium expert today to learn more.

    About Author

    About Author

    Zachariah Peterson has an extensive technical background in academia and industry. He currently provides research, design, and marketing services to electronics companies. Prior to working in the PCB industry, he taught at Portland State University. He conducted his Physics M.S. research on chemisorptive gas sensors and his Applied Physics Ph.D. research on random laser theory and stability. His background in scientific research spans topics in nanoparticle lasers, electronic and optoelectronic semiconductor devices, environmental sensing and monitoring systems, and financial analytics. His work has been published in over a dozen peer-reviewed journals and conference proceedings, and he has written hundreds of technical blogs on PCB design for a number of companies. Zachariah currently works with other companies in the electronics industry providing design, research, and marketing services. He is a member of IEEE Photonics Society, IEEE Electronics Packaging Society, and the American Physical Society, and he currently serves on the INCITS Quantum Computing Technical Advisory Committee.

    most recent articles

    Back to Home