Standards for PCB Thermal Shock and Temperature Testing

Zachariah Peterson
|  Created: March 22, 2021
Standards for PCB Thermal Shock and T Testing

Electronic components generate heat while they operate, which will heat up the rest of your board. Heat will move to cooler areas of the board, but a board that reaches high temperature without quickly dissipating heat is prone to failure. Thermal shock testing aims to evaluate a design to ensure it can withstand thermal shock and comply with important application requirements. The best set of design tools, like the circuit board layout features Altium Designer, can help designers identify and correct any design defects that can lead to failure under thermal shock.

ALTIUM DESIGNER

A unified PCB design package that integrates advanced PCB layout tools with assembly and manufacturing preparation features.

Designers should always do their best to ensure their boards are kept cool during operation. Although designers often include features like thermal vias, heat sinks and fans, extra copper, and bonding with thermal interface materials, these don’t provide complete protection against thermal shock. When thermal shock occurs, it can cause a circuit board or its components to fail, and boards for many rugged applications need to be tested for thermal shock reliability.

Thermal shock testing follows multiple standards, and thermally reliable products should be designed to withstand the demands of these thermal tests. With the best set of design tools, a design team can implement the thermal management approach that helps prevent failure due to thermal shock. If your next design will be deployed in a rugged environment, then you should plan for thermal shock testing and design your board to withstand these tests.

Understanding Thermal Reliability in a Circuit Board.

Thermal shock testing involves bringing a board to a high temperature in a short amount of time and held at that temperature. After the test, the board is brought online to inspect for damage or failure. What qualifies as a board failure is product-specific, but the industry standards that govern thermal shock testing are universal. Designing for thermal reliability requires understanding examining structural reliability and failure in the circuit board, as well as component reliability and failure:

  • Thermal shock reliability. When a board is exposed to very high temperatures, it can heat up very quickly, which may cause mechanical components or conductors on the board to fail under thermo-mechanical stress.
  • Thermal cycling. Thermal shocks can happen repeatedly. Even though the board may not heat up to a high enough temperature to fail instantly, damage can accumulate over time as the PBC temperature is repeatedly cycled between two extreme values. Over time, conductors can become fatigued (e.g., through micro-cracking, corrosion, or pitting) and elastic materials can become embrittled.
  • Component failure. Components can fail immediately via multiple mechanisms. This can occur even if the board withstands a thermal shock. Some failure mechanisms are component-specific and the required thermal shock testing must be determined on a per-product basis.

There are specific standards that designers must consider when designing a board to ensure thermal shock reliability.

IPC-TM-650 2.6.7 Thermal Shock Testing

The IPC-TM-650 2.6.7 standards are general thermal shock testing requirements based on MIL-STD standards. These standards are applicable to multiple materials used in circuit boards. The IPC-TM-650 2.6.7 standard specifies the test temperature range as a multiple of the PCB substrate’s glass transition temperature (Tg) for the board’s substrate or over a standard range (MIL-STD-202G). In this test, IPC-D test coupons are specified to be subjected to thermal shocks ranging from -55 °C to the minimum of: Tg - 10 °C, reflow temperature – 25 °C, or 210 °C, which covers typical temperatures for a wide range of materials.

MIL-STD-202G Thermal Shock Testing

MIL-STD-202G, Method 107 is another standard thermal shock testing methodology for defense military equipment. This standard applies to air-to-air methods or liquid-to-liquid methods, where a board is simply transferred between hot and cool air, or between hot and cool liquids. This determines the rate of heat transfer during the test.

These test standards cover a broad range of conditions that might be seen in consumer, industrial, aerospace, and military applications. Before designing your PCB layout with the best design software, take some time to understand what circuit board layout features determine thermal reliability.

Thermal shock testing backplane design in Altium Designer

Backplane design in Altium Designer.

Designing Circuit Boards for Thermal Reliability

There are many decisions a designer can make to ensure a board has high reliability. It all starts with selecting the right PCB substrate material that can withstand high heat without large thermal expansion. The materials in your circuit board and components will determine how heat is transferred around the board during operation, and how the board expands when it experiences thermal shock.

Other important aspects of a PCB layout include use of copper and arrangement of components to help prevent hotspots from forming during operation. There are some simple design choices that will influence the final temperature of your board if it experiences thermal shock:

  • Use PCB substrate materials with high thermal conductivity
  • Use thermal vias and grounded polygon pour to remove heat from components
  • Use heatsinks and fans on critical components
  • Use a PCB substrate material with a high Tg value
  • Use additional copper pour and plane layers to control heat dissipation
  • Use a thermal interface material to bond the board to its enclosure

Once your prototype is created, it should be put through thermal shock testing to ensure these design decisions are valid. The best PCB design software like Altium Designer will include the features you need to implement any of the design choices listed above.

Using the Best PCB Design Software for Reliable Circuit Boards

Altium Designer includes CAD tools, layout utilities, and routing features to help designers apply any of the above thermal reliability measures and much more. In particular, the stackup manager in Altium Designer lets designers select from a library of common core/prepreg materials, or a designer can enter materials data for a custom material. This gives designers full control over their PCB stackup design when building products for use in rugged environments.

PCB thermal shock testing reliability

Design your board with the best set of design tools to ensure reliability.

Prepare Your Board for Manufacturing and Testing in Altium Designer

Fabrication and assembly are where your design will be put to the test, and a manufactured design will need to be thoroughly tested for reliability. Electrical testing, thermal testing, mechanical testing, and functional testing need to be performed, and the best PCB design software can help you prepare your design for full-scale fabrication and testing.

Altium Designer includes automated design documentation tools that help you prepare for production without using an external program. Altium Designer speeds up the production process by preparing documentation directly from your design data. It’s simple to prepare a design for fabrication and assembly thanks to the complete set of PCB layout tools in Altium Designer. Once you’re ready to send your board off for manufacturing, it’s easy to send a design out for manufacturing through the Altium 365 platform.

Altium Designer is the Best Software for Building Reliable Circuit Boards

The rules-driven design environment in Altium Designer is key to designing a circuit board for reliability. The online DRC engine catches layout errors whenever they are created, including layout problems that can cause a board to fail thermal shock testing. You can keep your design team operating at peak efficiency with Altium Designer.

PCB design software Altium Designer

Altium Designer includes a comprehensive set of PCB design and layout utilities for any electronic product.

If you need to prepare a new design for manufacturing and thermal shock testing, don’t use a set of 3rd party design and manufacturing programs. Use Altium Designer to implement best practices for thermal reliability and to prepare your new design for production. No other design application provides a complete set of design, sharing, and design verification features in a single application.

Altium Designer on Altium 365 delivers unprecedented integration to the electronics industry until now relegated to the world of software development, allowing designers to work from home and reach unprecedented levels of efficiency.

We have only scratched the surface of what is possible to do with Altium Designer on Altium 365. You can check the product page for a more in-depth feature description or one of the On-Demand Webinars.

About Author

About Author

Zachariah Peterson has an extensive technical background in academia and industry. He currently provides research, design, and marketing services to companies in the electronics industry. Prior to working in the PCB industry, he taught at Portland State University and conducted research on random laser theory, materials, and stability. His background in scientific research spans topics in nanoparticle lasers, electronic and optoelectronic semiconductor devices, environmental sensors, and stochastics. His work has been published in over a dozen peer-reviewed journals and conference proceedings, and he has written 2500+ technical articles on PCB design for a number of companies. He is a member of IEEE Photonics Society, IEEE Electronics Packaging Society, American Physical Society, and the Printed Circuit Engineering Association (PCEA). He previously served as a voting member on the INCITS Quantum Computing Technical Advisory Committee working on technical standards for quantum electronics, and he currently serves on the IEEE P3186 Working Group focused on Port Interface Representing Photonic Signals Using SPICE-class Circuit Simulators.

Related Resources

Related Technical Documentation

Back to Home
Thank you, you are now subscribed to updates.