Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment

Downloads

Download the latest in PCB design and EDA software

  • PCB DESIGN SOFTWARE
  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool

  • NEXUS

    Agile PCB Design For Teams

  • CLOUD PLATFORM
  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • COMPONENT MANAGEMENT
  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PRODUCT EXTENSIONS
  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions
  • EMBEDDED
  • TASKING

    World-Renowned Technology for Embedded Systems Development

  • TRAININGS
  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • ONLINE VIEWER
  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use

    ALTIUMLIVE

    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience

    Downloads

    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Planning Your Next HDI Stackup with PCB Layer Management

    Altium Designer
    |  August 3, 2018

    Blue PCB with high trace density

    Not to toot my own horn, but I just became a  homeowner. The moving process will start soon: everything needs to be packed in boxes and creatively arranged in a truck on moving day. I only hope that I can minimize my number of trips between my old apartment and new house without damaging anything. Packing all the family belongings in a truck evokes images of packing more features and components into the limited real estate available on a PCB.

    At some point, the only way to continue packing features into your PCB without increasing the board size is to use HDI design techniques. This requires judicious use of vias, creative trace routing, and a layer stackup strategy for your PCB. If done properly, your layer stackup and routing helps maintain signal integrity and prevent interference from EMI.

    Standard HDI Stackup Strategies

    Each HDI stackup strategy is given a standardized designation. The simplest HDI stackup is called “1+N+1”; in this arrangement, the top and bottom layers are arranged as high density signal layers. The remaining N layers in between the signal layers are arranged as alternating power and ground layers. Placing ground layers below signal layers creates a small current loop with lower inductance, and the presence of the nearby ground plane helps reduce EMI.

    The next stackup design is called “i+N+i”, where the design uses multiple signal layers. The outermost layers on each side of the PCB are designed as high density signal layers, and the interior layers are designed as power or ground plane layers. Just as was the case in the 1+N+1 stackup, the power and ground arrangement should also be designed to provide a short path to ground while still suppressing EMI.

    The most complex HDI stackup arrangement is called “any layer”. This stackup arrangement allows high density routing to be placed on any layer and requires placing vias between each layer. This requires using a combination of through-hole, blind, and buried vias to reach each layer. This stackup strategy is reliable for devices with high pin density like CPUs and FPGAs.

    HDI Stackup With BGAs

    Newer FPGAs placed on boards with small form factor will require HDI stackup and routing techniques. Once you incorporate a BGA for use with a high pin density FPGA or similar component, your chances of moving to an any-layer HDI stackup strategy increase. BGAs with higher pin density will require more dense trace connections to handle escape routing. The i+N+i and any layer stackups are best used with BGAs for high pin density components.

    Escape routing can be made easier by simply routing in multiple layers. Moving between layers for BGA fanout and breakout will require the use of vias, and the placement of vias depends on the fanout strategy. Dog-bone fanout is typically used when the BGA pitch is coarse. As the pitch becomes fine and pin density becomes large, microvia-in-pad should be used to route connections to inner signal layers.

    Routing between BGAs with PCB design software

    Routing between BGAs with PCB design software

    Vias in HDI Design and Manufacturing Difficulties

    When the differences between conventional and HDI PCBs are compared, the essential difference is that HDI PCBs typically connect layers using blind and buried vias rather than through-hole vias. This is especially important in HDI boards with multiple signal layers. The extremely fine spacing between signal lines in an HDI PCB typically requires the use of laser microvias rather than drilled vias.

    To save space on an HDI board, it is to pick a via diameter and stick with it. Via plating can become difficult if your HDI board includes through-hole vias. As the board thickness increases, so does the via aspect ratio. Higher aspect ratio through-hole vias are more difficult to plate, as the concentration gradient in a plating solution makes the plating near the center of the via thinner than at the outside.

    Some manufacturers can improve interior coverage using oscillation or pressing, which forces the plating solution deeper into the via neck. Nevertheless, the interior plating can remain relatively thin and prone to fracture if the board is used in a harsh environment. This underscores the advantages of using stacked vias in your HDI stackup instead of through-hole vias. Be sure to consult your manufacturer’s capabilities if you must use through-hole vias.

    One option to prevent the above issues with through-hole vias is to use stacked vias on top of buried vias. The buried via can still span multiple layers and will have better structural integrity than a through-hole via with high aspect ratio. The blind vias connect between the uppermost signal layers and create a smaller impedance discontinuity between signal layers in an i+N+i stackup. This allows you to use a buried via with small diameter and moderate aspect ratio.

    PCB manufacturing processing

    PCB manufacturing processing

    Another technique mixing buried and blind vias is building “staggered vias.” This structure connects blind vias at each end of the buried via, but the blind vias are offset some distance away from the buried via. Blind vias in adjacent layers are also offset from each other. This arrangement forms a staircase shape and can give you more routing flexibility compared to a simple stacked via structure.

    Your PCB design software should allow you to define any stackup in your PCB without requiring specialized tools. The advanced CAD, layout, and simulation tools in Altium Designer® make it easy to define your layer stackup. Download a free trial and find out if Altium is right for you.

    If you are interested in learning more about the design features in Altium , talk to an Altium expert today.

    About Author

    About Author

    PCB Design Tools for Electronics Design and DFM. Information for EDA Leaders.

    most recent articles

    Back to Home