Free Trials

Download a free trial to find out which Altium software best suits your needs

How to Buy

Contact your local sales office to get started on improving your design environment


Download the latest in PCB design and EDA software

  • Altium Designer

    Complete Environment for Schematic + Layout

  • CircuitStudio

    Entry Level, Professional PCB Design Tool

  • CircuitMaker

    Community Based PCB Design Tool


    Agile PCB Design For Teams

  • Altium 365

    Connecting PCB Design to the Manufacturing Floor

  • Altium Concord Pro

    Complete Solution for Library Management

  • Octopart

    Extensive, Easy-to-Use Component Database

  • PDN Analyzer

    Natural and Effortless Power Distribution Network Analysis

  • See All Extensions

    World-Renowned Technology for Embedded Systems Development

  • Live Courses

    Learn best practices with instructional training available worldwide

  • On-Demand Courses

    Gain comprehensive knowledge without leaving your home or office

  • Altium 365 Viewer

    View & Share electronic designs in your browser

  • Altium Designer 20

    The most powerful, modern and easy-to-use PCB design tool for professional use


    Annual PCB Design Summit

    • Forum

      Where Altium users and enthusiasts can interact with each other

    • Blog

      Our blog about things that interest us and hopefully you too

    • Ideas

      Submit ideas and vote for new features you want in Altium tools

    • Bug Crunch

      Help make the software better by submitting bugs and voting on what's important

    • Wall

      A stream of events on AltiumLive you follow by participating in or subscribing to

    • Beta Program

      Information about participating in our Beta program and getting early access to Altium tools

    All Resources

    Explore the latest content from blog posts to social media and technical white papers gathered together for your convenience


    Take a look at what download options are available to best suit your needs

    How to Buy

    Contact your local sales office to get started improving your design environment

    • Documentation

      The documentation area is where you can find extensive, versioned information about our software online, for free.

    • Training & Events

      View the schedule and register for training events all around the world and online

    • Design Content

      Browse our vast library of free design content including components, templates and reference designs

    • Webinars

      Attend a live webinar online or get instant access to our on demand series of webinars

    • Support

      Get your questions answered with our variety of direct support and self-service options

    • Technical Papers

      Stay up to date with the latest technology and industry trends with our complete collection of technical white papers.

    • Video Library

      Quick and to-the-point video tutorials to get you started with Altium Designer

    Practical steps for creating embedded components with side-emitting LEDs

    Max Clemons
    |  February 21, 2017

    To meet the demands for product miniaturization, more people are turning to embedded components. Embedded components, sometimes referred to as embedded passives when it's just capacitors and resistors, are surface mount devices that can be added to inner layers of a multi-layer PCB, with cavities in the surrounding dielectric layers to allow them to be embedded inside the final PCB stack-up. In this blog, Max Clemons (AE, Marketing) shows a novel approach for creating embedded for side-view LEDs that will shine brightly from the very edges of the Printed Board he's working on, which are laminated into the layer stack.

    Creating an Embedded Side-View LED

    The Bluetooth Sentinel design, included with Altium Designer's installation, gives a good introduction to some of the new rigid-flex tools available. I was asked to modify this design to incorporate a different style of flexible region, but the repurposed board was left without room to place LEDs around its perimeter. Finding a way to add the LEDs back in posed an interesting challenge, and gave the perfect opportunity to try out some of the new tools.

    Creating an Embedded Side-View LED

    One of the cool new features added for Altium Designer is the ability to embed components within the board. This can be done for a number of reasons, including cutting down on space in very dense designs, and shortening return lengths in high speed applications. For the modified Bluetooth Sentinel design, an alternative was needed for the LEDs, and embedding Side-View LEDs maintained the original functionality of the design tools, without having to modify it too much.

    A thin package like the 48-213 SMD LED to the left was ideal for embedding, but really, the choice was only limited by the amount of vertical space available in the board. Creating this footprint was fairly straightforward, with only a couple minor additions to take advantage of the new features.

    1. Footprint information and package dimensions were both available in the datasheet. When creating a footprint, one of the fastest ways to achieve a good end result is to set an appropriate Reference Point and Grid spacing. From there, it’s simply a matter of placing Pads, 3D Bodies, and any additional Mechanical information required.

    Distance between pad placement

    2. Extruded bodies worked fine for most of the LED, the lens object being the lone exception. While the extruded bodies are surprisingly robust, and work well for polygonal shapes, the arced corners of the lens were more feasible to create externally and bring in as a STEP model.

    Distance between pad placement

    Distance between pad placement

    3. Preparing a component to be embedded starts from the footprint itself. A Cavity - simply a Solid Region configured as shown - must be placed in the panel. Its height, as defined from the Properties, should be just large enough to allow for the component body. The LED package was 0.3mm, so the Cavity was created with a height of 0.35mm. This, of course, will ultimately depend on your specific Layer Stack and overall design intent.

    Distance between pad placement

    4. It’s important to note that Cavities can be placed within any footprint, whether or not it will ever be embedded. When the component is placed on an inner layer, the Cavity will carve out a section of the core material, but on an outer layer, it won’t affect the design in any way. Placing one of the newly-created LEDs on an inner layer showed how cool this looks in action.

    Distance between pad placement

    5. Technically, a Cavity alters the Layer Stack in that particular area, and it’s crucial that this information is conveyed through fabrication notes. The Layer Stack Diagram that can be automatically generated and placed already takes this into account. In this design, there was no question where the Cavities were added, or what layers from the stackup were included in those areas.

    Layer stack diagram

    6. Assembly must also be considered, since embedded components are placed before those on the outside of the board. It’s a good idea to create a separate pick and place report, as well as an extra assembly drawing printout, for any inner layers embedded with components.

    I’ve included the footprint and completed design for reference, but this is certainly not the limit of how embedded components can be used. Just an interesting way to solve this problem!

    Related Downloads:

    - PDF data sheet

    - Bluetooth Sentinel

    It's worth mentioning that the cavity can be a part of the component even when it's not embedded - it just automatically does it's job when you move the component to inner layers.

    Then it's also worth *mentioning* what fabrication and assembly outputs would be needed - the layer stack table showing cavity regions, as well as separate Pick and Place report for the embedded panel, since they are mounted in an earlier process step.

    About Author

    About Author


    most recent articles

    Back to Home