Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
未配線のネットをどこにもつながらないトレースにしないでください 未配線のネットをどこにもつながらないトレースにしないでください 1 min Thought Leadership 映画で、列車が線路を走っていて、橋を渡り始めるものの、先に進むと線路が途切れて橋がどこにも繋がっていないことに気づくシーンを見たことがありますか?それは怖い状況で、以前は列車技師と呼ばれていた機敏な列車の運転手だけが大惨事を防げます。同じくらいの大惨事ではありませんが、基板上に未配線のネットがあると、PCBの動作に大きな混乱を引き起こす可能性があります。 未配線のネットは、接続が必要な場所に開いた回路のことです。コンポーネントのパッドやパッドとビアの間に完成した経路がないと、回路が不規則に動作したり、差動ペア間でインピーダンスの不一致が生じたり、熱を保持してコンポーネントや基板が損傷する可能性がある部分で熱を保持してしまうことがあります。PCB製造業者が未配線のネットを認識できない場合があるため、これらの不完全または欠落している接続を設計中に特定して解決することが、使用できない基板の製造を防ぎ、不必要な追加コストを避けるために不可欠です。Altium Designerを使用すると、回路図上の電気的接続をチェックし、PCBレイアウト上のネット接続を確認し、必要な変更を簡単に行うことができる包括的な統合設計パッケージを手に入れることができます。設計に存在する可能性のある未配線のネットを特定して解決するためのこれらのツールを探ってみましょう。 未配線のネットを特定する方法 あなたの回路図が完全に接続されていることを確認する責任はあなたにあります。もし、あなたの設計に集積回路(IC)が含まれている場合、外部に接続されていないピンや使用されていないピンがある可能性が高いです。このため、回路図の接続を行う際には、コンポーネントのドキュメントに依存すべきです。役立つかもしれないヒントとして、コンポーネントの接続を示す図面やブロック図を作成し、回路図のガイドとして使用することが挙げられます。単純な回路の場合、この図面は回路図の未配線ネットを視覚的にチェックするためにも使用できます。しかし、ほとんどの回路の複雑さを考慮すると、回路図に対して電気的または電子的なルールチェック(ERC)を実行する必要があります。 回路図上の未配線ネットの特定 回路図の設計が完了し、PCBに変換する前に、ERCを実行する必要があります。一般的に、ERCは電気的接続を評価します。これには、パス、ラベリング、パラメータが含まれ、違反のリストを提供します。これらの違反は、ERCの設定時に選択したルールと報告レベルオプションに基づいています。ただし、一部のPCB設計ソフトウェアパッケージでは、ネットリストの作成やERCの実行が追加の設計ステップとして別になっていますが、Altium DesignerではERCはPCBレイアウトを生成する変換またはコンパイルの一部です。可能なチェックと違反の数は広範であり、ネットを特に扱うチェックがいくつか含まれています。成功したコンパイルを妨げる可能性のある 可能なネット違反の中で、未配線ネットを特定するのに最も役立つものを以下に挙げます。 接続されていないワイヤー ネット内の接続されていないオブジェクト フローティング入力ピンを含むネット ピンが1つだけのネット ドライバーのない信号 負荷のない信号 差動ペアの正のネットが欠けている 差動ペアの負のネットが欠けている 上記のリストには、誤ってラベル付けされたネット、不正確または欠落しているパラメータを持つネット、およびERCで検出可能なその他のネット違反が含まれておらず、PCBレイアウトを生成する前にこれらも修正する必要があります。 PCBレイアウト上の未配線ネットの特定 回路図がERCを違反なしで正常に通過することを、設計がPCBレイアウトに進むための要件とすべきです。Altium 記事を読む
接地を保つ:PCBレイアウトにおけるデジタル、アナログ、およびアースグラウンド エレクトロニクス設計におけるグラウンドリファレンスとシャーシグラウンドについて 1 min Thought Leadership アース接続技術、接地、PCBのグラウンド接続、PCBシャーシグラウンドの概念は、国際基準が概念と用語を分離しようと試みても、電子工学においては非常に複雑です。グラウンディングは、電子設計、電気作業、もちろんPCB設計のすべての側面で重要です。すべての回路には、私たちがグラウンドと呼ぶ参照接続が必要ですが、正確な参照はさまざまなシステムで異なる方法で定義されます。 さまざまなタイプの電子機器でPCBグラウンドがどのように機能し、グラウンド接続をどのように使用するか不確かな場合、すべてのシステムに適用される単純な答えはありません。異なるタイプの電子機器は、それぞれのポテンシャル参照を異なる方法で定義し、すべてのグラウンドが同じポテンシャルにあるわけではないことが、入門電子工学のクラスで学んだこととは対照的です。この記事では、デジタルグラウンド、アナロググラウンド、シャーシグラウンド、そして最終的にアースグラウンド接続を定義し統合するためのシステムレベルのアプローチを取ります。グラウンドが最終的にPCBにどのように接続され、最終的にシステム内のすべてのコンポーネントに接続されるかを学ぶために読み続けてください。 回路におけるグラウンド参照とは何か、そしてそれは何をするのか? 地面を定義する方法はいくつかありますが、誰に尋ねるかによって異なります。物理学者は特定の方法(主に理論的に)で定義する一方で、電気技師や電気工学者は文字通りあなたの足元の地面(アースグラウンド)を指しているかもしれません。電子工学では、地面をさまざまな機能を交換可能に実行するものとして参照することがあります。ここでは、電子工学における地面の主な機能をいくつか紹介します: 地面は電圧を測定するために使用される基準点を提供します。すべての電圧は、2点間の電場(および位置エネルギー)の観点から定義されます。これらの点の1つを「0V」と定義することができ、この0Vの基準を「地面」と呼ぶことがあります。これが、PCB内のグラウンドプレーンを「基準平面」と言う理由の1つです。 地面は電源への帰還電流の経路を提供するために使用でき、これにより回路が完成します。 概念的には、地面は大きな電荷の貯蔵庫として機能し、電流の流れの方向も定義します。地面を0Vの基準として取るため、この値(正または負)より上または下の電圧は、地面の位置に対して異なる方向に電流の流れを駆動します。 グラウンドは電場が終了する点を提供します。これは本当に最初のポイントの変形です。もし電磁気学のクラスで画像法の問題を解決しなければならなかったことがあれば、グラウンドは特に0Vで保持される等電位面として定義されることを覚えているはずです。この定義は、特定の電圧で保持される任意の導体(例えば、 PCBの電源プレーン)にも適用されることに注意してください。 完全なグラウンド導体を通る電圧降下は0Vです。言い換えると、グラウンド参照内の任意の2点間の電圧を測定すると、常に0Vを測定するはずです。これは上記のポイント2の再述です。 PCB設計では、電源がコンポーネントに供給される方法と、設計内でデジタル/アナログ信号がどのように測定されるかを定義するため、ポイント1と3についてよく話します。EMI/EMCの専門家は時々、ポイント4の観点からグラウンドについて話します。これは基本的にシールド材料の機能を説明します。誰もがポイント5を福音として受け入れますが、ポイント5は現実には起こりません。 これらのポイントをカバーした今、電子機器におけるグラウンディングとさまざまなタイプのグラウンドについて認識すべきいくつかのことがあります。 全てのグラウンドは不完全です 全てのグラウンド領域は上記の特性を持つことが意図されていますが、導体の実際の性質により、グラウンド基準として使用された場合には異なる機能を果たします。さらに、グラウンド領域の幾何学的形状は、電場および磁場との相互作用の仕方を決定し、それがグラウンド領域へのおよびグラウンド領域内の電流の動き方に影響を与えます。これが、 異なる信号がその周波数内容に依存した特定のリターンパスを持つ理由です。さらに、全てのグラウンドは非ゼロの抵抗を持っており、これが実際のグラウンドに関する次のポイントにつながります。 全てのグラウンドが0Vであるわけではない 浮遊している導体や、異なる電源を参照するシステム内の導体は、同じ0Vの電位を持っているとは限りません。言い換えると、異なる機器の2つのグラウンド参照が同じ参照に接続されている場合でも、それらの間の電位を測定すると、非ゼロの電圧を測定することになります。 これは、2つのデバイスが同じ導体をグラウンド接続として参照している場合にも発生することがあります。長い導体(例えば、マルチメーターで)を測定すると、電位差がゼロでない可能性があり、これは導体に沿って一定の電流が流れていることを意味します。大きなグラウンドや2つのグラウンド接続間のこの電位差は「グラウンドオフセット」と呼ばれます。大規模なマルチボードシステムや、産業用およびネットワーク機器のような分野では、グラウンドオフセットは差動信号を使用する理由の1つです(例: CANバス、 イーサネットなど)。差動プロトコルは2本のワイヤー間の電圧差を使用するため、それぞれのグラウンド参照は関係なく、信号は依然として解釈できます。 記事を読む