SPICE: Certainty for All Decisions

Design, validate, and verify the most advanced schematics.

シグナルインテグリティ

リソースライブラリを参照して、PCB設計とシグナルインテグリティの詳細をご覧ください。

Filter
Clear
Tags by Type
Popular Topics
Software
EMIシリーズ_パートI PCB設計におけるEMI制御の習得:PCB内での信号の伝播方法 電磁干渉(EMC)に対応するためのプリント基板(PCB)の設計には、電磁場と電流の観点から信号の伝播をしっかりと理解することが求められます。これらの概念は、電磁場の放出レベルを低く抑え、外部からの放出や干渉に対する感受性を低くするPCBの設計に役立つため、重要です。 この PCB設計におけるEMI制御のマスターシリーズの最初の記事では、これらの概念をより深く掘り下げ、プリント基板設計にどのように適用するかを見ていきます。 伝送線路における信号の伝播の概念 PCBにおける信号の伝播について考える際には、水がパイプを流れるという類似から、電磁場と伝送線路の観点にシフトすることが重要です。伝送線路は、含まれた電磁場の形でエネルギーを一地点から別の地点へ転送するように設計された構造です。プリント基板の文脈では、伝送線路は少なくとも2つの導体によって形成されます。これらの導体は、電磁場を含むことと、それらを回路内の別の地点に導くことにおいて同じくらい重要です。2つの導体のうち1つが欠けていると、信号を構成する電磁場は未含有のままとなり、これらの場の拡大によりEMC試験に失敗する可能性があります。 ここから浮かび上がる非常に重要な概念は、電磁信号は導体の内部ではなく、2つの導体の間の空間、すなわち誘電体の中に含まれているということです。EMCの観点からの私たちの目標は、2つの導体の間に含まれる電磁場を最大化し、その周囲にある電磁場を減少させることです。 図1 - PCBにおけるデジタル信号伝播の表現 PCBでは、信号伝播に使用される2つの導体は、信号ポテンシャル導体と戻りおよび参照ポテンシャル導体です。これをイメージする最も簡単な方法は、信号源に接続された上層が信号トレースをルーティングするために使用され、下層が信号源に接続された固体銅層であり、信号ポテンシャル参照にも接続されている二層基板です(図1参照)。私たちが信号と呼ぶものは、これら2つの導体の間に含まれる電磁場です。これは、信号が単一の導体に含まれているのではなく、これら2つの導体の間の誘電体に含まれる電磁エネルギーであることを意味します。また、これは誘電体の特性が信号の伝播に影響を与え、特に信号(またはEM波)が伝播する速度に影響を与えることを意味します。信号の速度は誘電体内の光速です。2つの導体の間には信号が存在するポイントと、まだ信号に達していないポイントがあります。デジタル信号において、これら2つの領域の間に完全な信号があり、まだ信号が存在しないポイントを 信号エッジまたは 信号波面と呼びます。これはデジタル信号における低レベル論理から高レベル論理への遷移ポイントです。 EMCの観点から、このポイントは非常に重要です。なぜなら、これは導体間で電場と磁場が低から高に遷移する場所だからです。このエネルギー状態が変化する速度が速いほど、すなわち信号が低レベルから高レベル論理に遷移する速度が速いほど、短時間でエネルギーの変化が圧縮されます。信号が伝送線路内でその源から目的地に伝播する際、信号波面または信号エッジが信号の伝播をリードします。 前方電流、戻り電流、及び変位電流 もう一つの重要な概念は、信号エッジが伝播するのを追うと、先端が電磁場の変化であるため、これが2つの導体の間の誘電体内に変位電流を生成することがわかるということです。この現象は、オリバー・ヘビサイドによってまとめられたマクスウェルの四つの方程式、特にアンペール-マクスウェルの法則によって説明されます。これをイメージする最も簡単な方法は、AC源が適用されたときのコンデンサーを考えることです(図2参照)。 図2 - Eフィールドが適用されていないコンデンサー(a)、正のEフィールドが適用されたコンデンサー(b)、負のEフィールドが適用されたコンデンサー(c) 実際には、コンデンサーのプレートとその誘電体の間に導電電流はありませんが、誘電体に含まれる束縛電荷は、コンデンサーのプレートの適用された電場に従って単に極性を持ちます(変位します)。これは、導電電流がコンデンサーのプレートを流れているかのように見えます。変位電流の概念は、信号伝播中に電流が形成される可能性があることを理解するために重要です。特に信号が負荷に達する前にです。古典回路理論の授業で教えられるように、電流は常にループで流れます。では、どうして信号が負荷に達する前、つまり、信号が源から負荷に向かい、再び源に戻って電流ループを形成するために連続的な導電電流を確立する前に電流が存在するのか ?これは変位電流のおかげで可能です。変位電流は、信号が伝播する際に電流がループ内で流れ続けることを可能にします。変位電流がない場合、導電電流だけがあれば、信号の伝播は起こりません。導電電流だけで作られた電流ループは、負荷に達する前にループを閉じることができないからです。これは、導電電流を通して誘電体を流れる電流が必要であることを意味しますが、定義上、これは不可能です。しかし、この見かけ上の電流、変位電流により、信号が伝播する際にループが瞬時に閉じます。
シグナル・インテグリティ_記事 2 高速PCB設計:信号整合性、EMI軽減、および熱管理の確保 高速信号の整合性は、現代のPCB(プリント回路基板)設計において重要であり、性能、信頼性、およびコンプライアンスに影響を与えます。高速PCBを設計するには、クロストーク、電磁干渉(EMI)、および熱管理などの信号整合性の問題を管理する必要があります。この記事では、クロストーク、グラウンドプレーン戦略、電磁干渉(EMI)、および熱管理を含む高速信号整合性のいくつかの重要な側面を探り、実用的な洞察と例を提供します。これらの概念をさらに深く掘り下げ、拡張された戦略と詳細な例を提供しましょう。 電磁結合とクロストーク 電磁結合:隣接するトレースの信号は、互いに電磁場を誘導することができ、干渉を引き起こします。この現象は電磁結合として知られており、高い周波数でより顕著になります。例えば、密接に配置された高速データラインを持つPCBを考えてみましょう。あるトレースが高周波のクロック信号を運び、隣接するトレースが敏感なデータ信号を運ぶ場合、クロック信号によって生成された電磁場はデータ信号にノイズを誘導し、データエラーを引き起こす可能性があります。 トレースの近接性:信号トレースが互いに近いほど、クロストークの可能性が高くなります。この干渉を減らすためには、トレース間に適切な間隔を保つことが重要です。例えば、高速イーサネットPCBでは、ペア内の信号整合性を確保するために差動ペアが密接に配線されます。しかし、異なるペア間ではクロストークを防ぐために十分な間隔が保たれます。 高周波信号:高い周波数は、より強力な電磁場を生成し、クロストークを悪化させる可能性があります。信号周波数が増加するにつれて、適切なレイアウトと間隔を確保することがますます重要になります。例として、RF回路設計では信号がギガヘルツ周波数に達することがあります。RF信号トレースを他のデジタルまたはアナログトレースから分離して干渉を防ぐために特別な注意が必要です。 不十分なグラウンディング:不適切なグラウンディングはクロストークへの感受性を高めます。固定された連続的なグラウンドプレーンは、リターン電流のための低インピーダンスパスを提供し、信号干渉のリスクを減少させます。例えば、多層PCBでは、信号層の直下にグラウンドプレーンが配置されます。これにより、リターン電流が明確なパスを持ち、クロストークの可能性を最小限に抑えることができます。 高速デジタル通信分析において使用されるアイダイアグラムは、開いたアイパターンを通じて信号整合性を示し、色のグラデーションが信号密度と性能を示しています。 EMI軽減技術 適切なPCBレイアウト: トレースのルーティングを最適化し、ループ領域を最小限に抑え、グラウンドプレーンを効果的に使用することで、EMIを大幅に削減できます。例えば、高速デジタル設計では、重要な信号トレースをグラウンドプレーンの間に挟まれた内部層にルーティングします。これによりループ領域が最小限に抑えられ、EMIに対する効果的な遮蔽が提供されます。 フィルタリング: フェライトビーズやキャパシタなどのフィルタを実装することで、高周波ノイズを抑制し、EMIを減少させることができます。例えば、フェライトビーズは電源ラインに配置され、高周波ノイズをフィルタリングし、それが敏感なアナログ回路に伝播するのを防ぎます。 コンポーネントの配置: 騒音の多いコンポーネントを敏感なエリアから離して配置し、適切な遮蔽を確保することで、EMIを軽減することができます。例えば、混合信号PCBでは、アナログコンポーネントを一方の側に配置し、デジタルコンポーネントを反対側に配置し、その間にグラウンドプレーンを配置して隔離を提供します。 金属シールド: 騒音の多いコンポーネントを金属シールドで囲むことで、EMI放射を防ぎ、近くの敏感な回路を保護できます。例えば、PCB上のRFモジュールは、電磁放射を含むためにしばしば金属シールドで覆われ、隣接する回路との干渉を防ぎます。 グラウンディングとボンディング: 適切なグラウンディングとボンディングを確保することで、リターン電流の明確な経路を提供し、グラウンドループの可能性を減少させることにより、EMIを最小限に抑えます。例えば、グラウンディングストラップやビアを使用して異なるグラウンドプレーンを接続し、PCB全体にわたってリターン電流の低インピーダンス経路を確保します。 フィルタ設計: 容量性および誘導性フィルタを使用することで、望ましくない周波数を効果的にブロックし、EMIを減少させ、信号の整合性を向上させます。例として、入力ラインに使用されるローパスフィルタは、高周波ノイズをフィルタリングし、敏感なコンポーネントに到達する信号の周波数のみを確保します。
SI 記事 1 PCBデザイナーのための究極の高速信号整合性入門 シグナルインテグリティの基礎 シグナルインテグリティとは、PCB(プリント回路基板)を通過する電気信号の品質と信頼性を指します。高速PCB設計において、シグナルインテグリティを維持することは重要であり、わずかな信号の歪みでもデータの破損、通信エラー、全体的なシステムの故障につながる可能性があります。インピーダンスの不一致、クロストーク、信号の反射、電力の変動などの要因がシグナルインテグリティに大きな影響を与えるため、慎重な設計と分析が必要です。 PCBにおけるインピーダンスの理解 PCB設計の文脈において、インピーダンスとは、交流が回路を通過する際に遭遇する抵抗のことです。このインピーダンスは、トレースの幅や厚さ、これらのトレースの間に使用される誘電体材料の種類、PCBの層の全体的な構成など、さまざまな要因によって形成されます。高速PCBアプリケーションでは、信号の反射を避け、信頼性の高いデータ伝送を保証するために、一定のインピーダンスを維持することが重要です。 高速PCB設計におけるインピーダンスの一貫性を確保するために、いくつかの戦略的な技術が適用されます: 制御インピーダンストレース: エンジニアは、目標インピーダンス値を達成するために、トレースの幅や間隔といった幾何学的特性を設計します。高度なシミュレーションツールが使用され、これらのインピーダンスレベルを生産前にモデル化し検証します。例えば、特定の信号トレースに対して50オームのインピーダンスを確立することが設計要件となる場合があります。シミュレーションを通じて、トレースの寸法はこの仕様を一貫して満たすように微調整されます。 差動ペア: 高速信号伝送において、信号はしばしば差動ペアとして配線され、これは2つの補完的な信号が同時に送信されることを意味します。この構成はインピーダンスを安定させるだけでなく、ノイズの軽減にも役立ちます。USB 3.0技術において差動ペアが一般的に使用され、信号の整合性を向上させ、電磁干渉を減少させます。 材料選択: 基板材料の選択は、インピーダンス安定性に大きな影響を与えます。一貫した誘電特性を持つ材料を選択することで、PCB全体でインピーダンスが変動しないようにします。例えば、安定した誘電定数で知られる標準のFR4材料は、回路基板全体でインピーダンスの一貫性を維持するためによく選ばれます(トレースが長すぎない場合)。 Altium DesignerのPCBスタックアップエディターに統合された電磁場ソルバー 反射と信号終端 信号反射は、信号がその経路に沿ってインピーダンスの不一致に遭遇したときに発生し、信号の一部がソースに向かって反射することを引き起こします。この反射は信号を歪ませ、データエラーを引き起こし、全体的な信号の整合性を低下させる可能性があります。インピーダンスの不一致の一般的な原因には、トレース幅の急激な変化、ビア、コネクターが含まれます。 終端技術は、伝送線のインピーダンスを負荷と一致させ、反射を最小限に抑えるために使用されます: 直列終端: これは、信号源の近くに抵抗を直列に配置することを含みます。これは短いトレースに対して単純で効果的です。例えば、高速メモリインターフェースでは、トレースインピーダンスに一致させ、反射を防ぐために33オームの直列抵抗が使用されるかもしれません。 並列終端: