SPICE: Certainty for All Decisions

Design, validate, and verify the most advanced schematics.

シグナルインテグリティ

リソースライブラリを参照して、PCB設計とシグナルインテグリティの詳細をご覧ください。

PCB設計におけるEMI制御の習得:より良いEMIのためのクロストーク防止 シリーズの第6回目へようこそ、 PCBデザインにおけるEMI制御の習得です。この記事では、クロストークが信号の整合性とEMIにどのように影響を与えるかを探り、デザインでこれにどう対処するかについて議論します。 図1 - Altium Designer®でのPCBデザインの例 クロストークは、現代のプリント基板(PCB)デザインで最も頻繁に遭遇する問題の一つです。PCBの密度が増し続けるにつれて、この現象はさらに一般的になっています。より多くの高速インターフェースを、より小さなボードのエリアに統合するという傾向は、この課題を悪化させます。コンパクトなレイアウトはトレース間の近接を引き起こし、クロストークの可能性を大幅に高めます。 本質的に、信号のクロストークは、あるネット(またはトレース)から別のネットへの電気信号の意図しない転送を指します。これは、あるトレースを伝わる信号が生成する電磁場が隣接するトレースと相互作用するときに発生します。この文脈では、元の信号を運ぶトレースは一般に 「アグレッサー」と呼ばれ、望ましくない信号を受け取るトレースは 「ビクティム」として知られています。 図2 - クロストークが回路でどのように現れるかの例 電磁干渉(EMI)の分野では、クロストークは非常に重要です。これは、システム内の干渉の原因となるだけでなく、他のデバイスを乱す電磁放射の源にもなり得るからです。クロストークに関して重要なのは、信号電流が伝播する信号トレース間だけでなく、リターン電流がその源へ戻るリターン参照導体でも発生するということです。ここでは、 「グラウンドバウンス」といった現象が発生しますが、これもリターン参照導体で起こるクロストークの一例です。 クロストークとその影響を理解する クロストークの現象は主に2つの理由で発生します:導体間の静電容量結合と誘導結合です。2つ以上のトレースが非常に近くに配置され、信号の電圧と電流が時間とともに変化すると、信号トレースの端(アグレッサーと呼ばれる)のフリンジフィールド(電場と磁場)が近くのトレース(被害者)に結合し、これら近くのトレースに望ましくないノイズを引き起こします。 PCB設計者の仕事は、EMIを効果的に減少させるために、これらのフリンジフィールドが他の導体に与える影響を最小限に抑えることで、ノイズが一つのトレースから別のトレースへ伝播しないようにすることです。 図3 -
PCB設計におけるEMI制御の習得:PDNのためのデカップリング戦略 PCB設計におけるEMI制御をマスターするシリーズの第5回目へようこそ。この記事では、電力分配戦略についてさらに深く掘り下げ、PCBプロジェクトにおける電磁干渉(EMI)性能を向上させるための最適化方法について議論します。 図1 - Altium Designer®でのデカップリング戦略の例 デジタルプリント基板上でEMIを制御し、信号整合性を向上させる上での重要な要素は、効果的なデカップリング戦略を実装することです。これらのアプローチは、基板上の集積回路(IC)にクリーンで安定したエネルギー供給を保証します。 これを達成するために、PCB設計者は、高速スイッチングICのエネルギー需要を満たす強力な電力供給ネットワーク(PDN)を作成する必要があります。これにより、電源から適切な電流量をICが受け取ることを保証します。効率的かつタイムリーにエネルギーを供給するPDNを設計することは挑戦的です。これには、損失を減らし、高性能のためのインピーダンスニーズを満たすことが求められます。 データレートと信号速度が増加し続ける中、低インピーダンスのPDN(Power Delivery Network)を設計することがより重要かつ困難になっています。これは、インピーダンスプロファイルが送信される信号の周波数と密接に関連しているためです。これらの要因をバランスさせることは、PCB設計の性能を維持し、EMI(電磁干渉)の問題を最小限に抑えるために不可欠です。効果的なパワーデリバリーネットワーク(PDN)を設計する際には、デカップリングキャパシタの組み込みや、スタックアップ内でのパワープレーンや銅ポリゴンの使用など、いくつかの一般的な技術が使用されます。 しかし、広く受け入れられている方法や神話の中には、実際には効果がないだけでなく、ボードの性能に悪影響を及ぼすものもあります。 アンチレゾナンス 一つの人気のある技術は、10nFから1µFまでの異なるサイズの複数のキャパシタを使用することです。大きなキャパシタが集積回路(IC)にエネルギーを供給し、小さなキャパシタが高周波ノイズをフィルタリングするという考え方です。このアプローチは論理的に思えますが、PDNの全体的なインピーダンスを減らそうとするときに実際には逆効果になることがあります。逆効果になる理由は、実際のキャパシタは理想的に振る舞わず、高周波数で顕著になる寄生効果を持っているためです。 コンデンサは、その共振周波数までのみ容量性インピーダンスを示します。この点を超えると、コンデンサのパッケージ内の寄生成分がインピーダンスに影響を与え始め、コンデンサの振る舞いがより誘導性を帯びるようになります。全体の容量を高め、インピーダンスを低くするために異なるサイズのコンデンサを使用する試みは、重大な課題を提示することがあります。これは、各コンデンサが独自のインピーダンスプロファイルを持ち、その特有の特性によって影響を受けるためです。各コンデンサは異なる共振周波数も持っており、これらのインピーダンスプロファイルが互いに重なる状況につながります。このインピーダンスプロファイルの重なりは、特定の周波数でより高いインピーダンスピークを引き起こします。これらのピークは、コンデンサのさまざまな共振周波数間の相互作用によって発生します。 図2 - アンチレゾナンス — 異なるインピーダンスプロファイルを持つ異なるサイズのコンデンサを並列に配置する効果。出典: fresuelectronics.com
EMI Series Part IV PCB設計におけるEMI制御の習得:低EMIのためのPCB設計方法 PCB設計におけるEMI制御をマスターするシリーズの第4回目へようこそ。 PCB設計におけるEMI制御のマスタリング。この回では、効果的なPCB設計に不可欠な電磁干渉(EMI)の管理に関する高度な側面を探ります。 プリント基板(PCB)を設計する際の主な課題は、設計が放射された排出と導かれた排出の両方のテストに合格できるようにすることです。これは、規制基準を満たし、意図した環境でPCBが適切に機能し、他のデバイスやシステムへの干渉を引き起こさないようにするために重要です。 同様に重要なのは、外部および内部の排出に対する免疫を達成することで、最終製品の信頼性と性能を確保することです。 図1 - Altium Designer®でのPCB設計の例 電磁干渉(EMI)の設計では、排出は主に回路内の電流の変化によって引き起こされることを理解することが重要です。これは、内部の電流変化により、すべての回路が必然的にある程度の電磁放射を発することを意味します。設計者にとっての主な課題は、この放射の程度を管理し制御することです。 より良い電磁両立性(EMC)を達成するためには、これらの電磁放射を効果的に含有し最小限に抑えるプリント基板を設計することに焦点を当てる必要があります。 これには、2つの主要なタイプの放射を対処することが含まれます: 差動モード電流による放射; 共通モード電流による放射。 図2 - 回路内の差動モード電流と共通モード電流(共通モード電流の戻り経路は示されていません)。参照:Dario Fresu これらの電流を理解する最も簡単な方法は、差動モード電流を異なる経路を通って「反対方向」に流れるものと考えることであり、共通モード電流は回路の経路に沿って同じ「共通」の方向に流れます。 差動モード電流からの放射を最小限に抑える方法 差動モード電流は、回路の正常な動作に不可欠です。これらの電流は、集積回路(IC)とコンポーネントの間を流れ、PCB内の回路の設計の一部です。
EMIシリーズ 第3部 EMI制御をマスターするPCB設計:EMC設計のためのスタックアップの選び方 電磁両立性(EMC)の面で優れた性能を発揮するPCBを設計する際に習得する最も重要な概念の一つは、PCBのレイヤースタックアップの選択です。 図1 - Altium Designerのレイヤースタックマネージャーツール これは、電磁場をPCB設計内で適切に保持することと密接に関連しているため、最も重要な側面の一つとなります。 この「PCB設計におけるEMI制御の習得」シリーズの第3記事では、これらの概念をさらに探求し、他の重要なEMCの概念についても見ていきます。 信号が回路内で伝播するためには、完全な電流ループを形成するために2つの導体が必要です。一方の導体が信号を運び、もう一方が復帰経路を提供し、電流が流れ、信号が効果的に伝送されることを保証します。導体の一方を 信号導体と呼び、もう一方を信号復帰および 参照導体と呼びます。復帰参照導体という名前は、その仕事が信号の参照(またはゼロボルト)だけでなく、信号電流が発生源に戻るための最小インピーダンスの経路を提供する必要があるためです。最小インピーダンスの経路を実現するために、トレースではなく平面を選択し、この平面は信号のインピーダンス不連続を作り出す可能性のある分割、切断、またはその他のセグメンテーションを持たないべきです。 この基本的な概念から、信号を持つ各層には、復帰および参照経路を提供する第二の導体、復帰参照平面が必要であることがわかります。このシンプルなルールに従うことで、隣接する復帰参照平面(RRP)と各信号層をマッチングすることによって、スタックアップの設計方法を決定できます。 以下は、電磁干渉を最小限に抑えるためのスタックアップの例です。 2層スタックアップの例 2層スタックアップでは、1層を信号と電力トレースに専用し、2層目をソリッドなリターン参照平面とする構成が可能です。 図2 - Altium DesignerのLayer Stack Visualizerツールを使用した2層スタックアップの例
Altium Need Help?