Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
パワーインテグリティ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Power Analyzer by Keysight
Power integrity analysis at design time.
Learn More
パワーインテグリティ
リソースライブラリを参照して、PCB設計とパワーインテグリティの詳細をご覧ください。
The Complete Guide to PCB Power Integrity
Power Analyzer by Keysight
PDN Analyzer
PDN Analyzer for DC Power Integrity
PDN Design for the PCB Designer
USB Type-C パワーデリバリーをあなたの設計に追加しましょう!
この記事では、Phil SalmonyがUSB Type-C Power Deliveryの基礎を探求し、専用のPD ICを自分のPCB設計に簡単に組み込む方法を学びます。
記事を読む
学習演習 - 電圧レギュレータテストフィクスチャ
この記事では、Mark Harrisが不完全なプロトタイプをどのようにして正しい方向に戻すか、将来の改善のためのいくつかのアイデアを見ていきます。
記事を読む
PDNインピーダンス解析、およびモデリング:回路図からレイアウトまで
シグナルインテグリティーはよく話題になりますが、シグナルインテグリティーはパワーインテグリティーと密接に関連しています。これは、電源/電圧レギュレーターからのスイッチングノイズまたはリップルを減らすだけではありません。PCB内のPDNのインピーダンスにより、基板のコンポーネントが電源の問題が原因で設計どおりに機能しなくなる設計上の問題が明らかになります。 ここでは、PDNインピーダンス解析の基本モデルについて理解していきます。PDNインピーダンスのある程度、正確なモデルを構築できれば、コンポーネントに適したデカップリング ネットワークを設計し、PDNのインピーダンスを許容範囲内に保持できます。 PDNインピーダンス解析を行う理由 この記事をご覧の高速、および高周波設計者の方は、この質問に対する答えを既にご存じだと思います。しかし、技術的な需要の高まりに合わせ、全ての設計者が予想より早く高速および高周波設計者になることが考えられるため
記事を読む
シグナルインテグリティーの問題を最小限に抑えるグランドバウンス低減方法
学生時代にバスケットボールチームで活躍した父とは異なり、私は入団テスト中、ボールをほとんどバウンドできませんでした。言うまでもなく、私はスポーツを始める前にやめてしまいました。NBAプロになるという夢は打ち砕かれましたが、その後、格闘技への情熱を見出しました。私はバスケットボールをうまく扱うことはできませんでしたが、少なくとも格闘技では足の甲で相手を跳ね返して(バウンスして)対抗することができました。 バスケットボールをバウンドできなくても大きな問題にはなりませんが、電子機器のグランドバウンスを理解していないと、回路にとって大きな問題になりかねません。信頼できるPCBレイアウトエンジニアとして優れた能力を発揮するには、回路およびシグナルインテグリティーへのグランドバウンスの影響に関する知識が必要です。グランドバウンス低減技術を考慮すれば、設計全体でPCBのシグナルインテグリティーのグランドバウンスを最小限に抑えることができます。 グランドバウンスとは グランドバウンスを理解するには
記事を読む
スプレッディングインダクタンスとは何ですか?
平面ペアの広がりインダクタンスは単純な意味を持っていますが、計算するのは難しい場合があります。ここでは、設計者が平面ペアの広がりインダクタンスについて知っておくべきいくつかのポイントを紹介します。
記事を読む
SRAMとは何か?PCB設計のヒントとデータ損失の防止方法
SRAMは電源が切れるとデータを失います。 編集ソフトウェアの最高の発明の一つは、最悪のタイミングでマーフィーの法則が発動するのを防ぐオートセーブ機能です。数十年前、オートセーブ機能が存在しないことが、「保存」ボタンを押すことを渋っていた私にとって悪化し、重要な大学の課題の数ページが文字通り消去されたとき、私はほとんど泣きました。 電子機器では、SRAMを設計する際の課題を認識していないと、静的ランダムアクセスメモリ(SRAM)に格納されているデータ全体を失うリスクがあります。これは、SRAMが重要な変数を格納している場合、特にハードウェアの予測不可能な動作を引き起こす可能性があります。 SRAMとは何か、そしてどのように機能するのか? SRAMは、組み込みシステム設計で一般的に使用される不揮発性メモリです。ロジカルビットで情報を格納し、動作電圧が供給されている限りその値を保持します。電源が切断されると、SRAM全体がデフォルト値、通常はロジック1に相当する値にリセットされます。
記事を読む
パワーインテグリティーの問題を簡単に解決
Altium Designerに内蔵されているKeysightのパワー・アナライザーを使用すると、基板の設計プロセスで発生するPDNの問題を統合設計環境で簡単に解決できます。
Multiple Dates and Times
木, 14 11月, 2024
2 PM
Register
フェライトビーズ使用のための3つの周波数範囲
3つの運用シナリオは、フェライトビーズのインピーダンスにおける3つの重要な周波数範囲と、それらがデジタルシステムのノイズにどのように影響するかを示しています。
記事を読む
現実世界でのオシロスコープ・プローブの分析
この記事では、オシロスコープ・プローブの実世界分析を行い、その性能と信号測定への影響を比較しています。著者は、高品質なものから予算オプションまで、さまざまなプローブをテストし、驚くべき結果を明らかにしています。期待に反して、一部の予算プローブはより高価なものと同等の性能を発揮することがあり、帯域幅だけがプローブ品質の唯一の決定要因ではないことを強調しています。この研究は、プローブの挙動を理解し、帯域幅だけでなく様々な要因を基に選択することの重要性を強調しています。さらに、記事は、主要なブランド名のプローブ(Diglent、Keysight、Rigol)が、より安価な代替品と比較して、より一貫した性能と品質管理を提供することを強調しています。
記事を読む
DC電子負荷を最大限に活用する方法
DC電子負荷は、過渡特性試験を含む電源の負荷試験に必要です。
記事を読む
ノイズの多い電源レールのフィルタリング方法
電源がオシロスコープでクリーンな電力を生産しているように見えても、実際のシステムでの電源の動作はノイズを生じさせたり、ノイズに影響されやすいことがあります。電源レールはしばしば、同じ電圧でシステム内の複数のデバイスに電力を供給する必要がありますが、システムの異なる部分でクリーンな電力が必要です。その場合、メインレール上のノイズは、システムの異なる部分に供給される前にクリーンアップする必要があります。 コンポーネントが動作する周波数範囲に応じて、これは単純なフィルタ回路、追加のキャパシタンス、および特定の場合にはフェライトビーズを使用して行うことができます。したがって、このブログでは、ターゲットデバイスに電力を供給するために電源レール上で異なるタイプのフィルタ回路を使用できる場合についていくつかのケースを概説します。場合によっては、レールを複数のレギュレータを持つ異なるレールに分けるのが最善の場合もありますが、他の場合では
記事を読む
電源供給の電流処理問題を理解する:原因と解決策
電子機器の最適な性能を実現するためには、電源の電流処理問題をトラブルシューティングすることが重要です。 このビデオでは、電源が定義された出力電流を処理できない一般的な理由と、これらの問題を解決するための実用的な解決策を探ります。電源を設計する場合も、既存のものを修理する場合も、電源の構造を理解することが、これらの問題を迅速に解決する鍵となります。 このガイドは主に、100Wまでのアプリケーションで広く使用されている フライバック型電源に焦点を当てています。フライバックコンバータのブロック図を調べることで、電流制御メカニズムの複雑さを理解することができます。 電源を一から作成する場合、正確なトランスフォーマーの計算や適切な巻線技術などの設計上の考慮事項が不可欠です。修理を試みる場合は、電流センス抵抗器やMosfetを評価し、 PWMコントローラに潜在的な損傷がないかを評価することが重要です。 このガイドで説明されているステップバイステップのトラブルシューティング技術に従うことで
記事を読む
電圧変動を防ぐ方法を知っていますか?
電源の問題で最も一般的なタイプの一つが出力電圧の変動です。この問題は、入力電圧の変動、負荷電流の予期せぬ変化、フィードバック制御ループの不具合、スイッチング周波数の問題、コンポーネントの許容差、温度変動、および部品の経年劣化など、さまざまな要因によって引き起こされます。 この記事では、出力電圧の変動の原因を簡単に探り、これらの問題を解決し、防止する方法についての洞察を提供します。 入力電圧の変動 電源(またはレギュレータチップ)への入力電圧は、レギュレータチップの絶対最大/最小限界を超える可能性があります。レギュレータ/コントローラチップはこれらの変動を処理できず、変動の頻度に応じて、出力電圧が低下したり、増加したり、または大量のリップルが発生する可能性があります。 例えば、テキサス・インスツルメンツ社の有名なLM2576-5.0 [1] レギュレータチップのアプリケーション図(図1)をご覧ください。入力電圧の変動範囲は7-40V(HVバージョンでは60V)であることが明記されています
記事を読む
PCBパワーインテグリティーの完全ガイド: 基板からパッケージまで
この記事では、PCB からパッケージまでのすべてを含む、パワーインテグリティーの完全な概要を説明します。
記事を読む
パッケージPDNが電力整合性にどのような影響を与えるのか?
コンポーネントパッケージには、それぞれの動作に影響を与え、PCB内での補償を促進する独自の電力分配ネットワーク(PDN)があります。
記事を読む
PDNシミュレーションにおけるフェライトビーズモデルと伝達インピーダンス
この記事では、PDNのフェライトと伝達インピーダンスについて調査します。PDN内のフェライトがスイッチング回路にどのような問題を引き起こすかを説明します。
記事を読む
SPICEにおけるPDNインピーダンスのシミュレーションと解析
パワーインテグリティ解析で寄生と誘導効果を適切にモデル化する方法を知っていれば、SPICEでPDNシミュレーションを実行できます。
記事を読む
Pagination
現在のページ
1
ページ
2
ページ
3
Next page
››
Last page
Last »
他のコンテンツを表示する