Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
PCBコアとプリプレグ材料:設計者が知っておくべきこと プリプレグ材料とPCBコアの違い:設計者が知っておくべきこと 1 min Thought Leadership PCBの材料選択や製造プロセスについてもっと知りたいというデザイナーからの質問を時々受けます。私は製造業者ではありませんが、新しいプロジェクトに取り組む際に利用可能な材料について何かを理解することは、デザイナーにとって有益です。PCBのコアとプリプレグ材料の正確な違いについて質問を受けることがあります。これらの用語は、時には初心者のデザイナーを含めて、交換可能に使用されることがあります。私もこれに該当することを認めます。 プリプレグとコアの違いが明確になったら、どのような材料を使用すべきか、重要な電気パラメータはメッキ、エッチング、硬化中にどのように変化するのか?GHz周波数で作業する必要があるデザイナーが増えるにつれて、これらの材料上でトレースを適切にサイジングし、複雑な信号整合性の問題を避けるために、これらの点は非常に重要になります。 PCBデザインにおけるコアとプリプレグの違いは何ですか? PCBのコアと積層材は似ているようで、いくつかの点で大きく異なります。コアは実質的に1枚以上のプリプレグ積層材であり、これらは圧縮され、硬化され、熱で硬化された後、両面に銅箔でメッキされます。プリプレグ材料は樹脂で含浸されており、この樹脂は硬化されますが、未硬化の状態で残されます。ほとんどのメーカーは、プリプレグをコア材料を一緒に保持する接着剤として説明しています。プリプレグ積層材の各側に2つのコアが積み重ねられ、その積層体を熱にさらすと、樹脂が隣接する層に結合し始めます。硬化した樹脂は徐々にクロスリンキングを通じて硬化し、その結果としての材料特性はコア層のそれに近づき始めます。 樹脂材料はガラス繊維を包み込み、このガラス繊維の製造プロセスは糸を製造するのに使用されるプロセスと非常に似ています。ガラス繊維は非常に密集している場合(例:7628プリプレグ)もあれば、緩い場合(例:1080プリプレグ)もあり、これは製造中に織機で制御されます。糸の隙間と全体的な均一性は電磁特性を決定し、これが信号がボード内で見る分散、損失、および任意のファイバーウィーブ効果の原因となります。 FR4 PCBコア/プリプレグ織物とその重要な材料特性。出典:Isola Group。 PCBコアとプリプレグ材料は、レジンの含有量、レジンの種類、ガラス織物によって、異なる誘電率を持つことがあります。これは、トラック上の信号によって見られる実効誘電率が周囲の材料の誘電率に依存するため、非常に正確なインピーダンスマッチングが必要なボードを設計する際に問題となることがあります。すべてのプリプレグとコア材料が互換性があるわけではなく、誘電率が大きく異なるコア/プリプレグのスタックは、相互接続における正確な誘電率と損失を予測することを難しくします(下記参照)。 任意のPCBコアまたはプリプレグ材料において、高電圧での 漏れ電流とクリープ電流は懸念されます。銅の電気移動とその後の導電性フィラメントの成長は、FR4材料のクリープ仕様の一因です。この問題、およびガラス転移温度と分解温度を上げる願望は、FR4コアとラミネートで非ジシアンジアミド(非DICY)レジンへの切り替えを促しました。フェノール樹脂は、DICYレジンと比較して、完全硬化後の高い分解温度とガラス転移温度を提供すると同時に、より高い絶縁抵抗を提供します。 異なるコアとプリプレグ材料の実効誘電率 コアとプリプレグ材料の明らかな構造的変化により、信号整合性の観点から誘電率と損失角の正確な値を得ることが重要です。信号の立ち上がり時間が短い場合、マーケティングデータシートから値を取ることができるかもしれません。しかし、膝周波数やアナログ信号がGHz範囲に達すると、データシートから引用された値に注意が必要になります。特に、 インピーダンス制御ルーティングを使用して相互接続の挙動をモデリングする場合はそうです。 データシートの値の問題は、実際に測定される誘電率はテスト方法、ルーティングの形状、特定の周波数(特にGHz範囲)、樹脂含有量、さらには材料の厚さに依存するためです。ジョン・クーンロッドは、 最近のポッドキャストでこの問題について広範囲にわたって議論しています。異なるPCBコア/プリプレグ材料の織りパターンは、それらを非常に不均一で異方性のあるものにしており、重要な材料特性が空間内および異なる方向に沿って変化することを意味します。これが、スキューやファイバー空洞共振などの ファイバーウィーブ効果が存在する理由です。 あなたは思うかもしれませんが、なぜラミネートの厚さが材料特性を特徴づける際に重要なのでしょうか?その理由は、信号の挙動を特徴づける重要なパラメーターが有効誘電率(これは複素数の量です!)であり、これは使用するトレースの寸法と層の厚さに依存するからです。 マイクロストリップおよび 対称ストリップライン伝送線に関するこれらの記事をご覧ください。 記事を読む
高電圧設計におけるIPC-2221計算機の使用 高電圧設計のためのIPC-2221 PCBクリアランス計算機の使用 1 min Blog PCB設計者 電気技術者 PCB設計者 PCB設計者 電気技術者 電気技術者 PCB設計およびアセンブリの規格は、生産性を制限するものではありません。代わりに、複数の業界にわたって製品設計と性能の統一された期待値を作成するのに役立ちます。特定の設計用の計算機、監査や検査のプロセスなど、ツールはコンプライアンス向けに標準化されます。 高電圧PCB設計において、PCB設計の重要な一般規格はIPC-2221です。多くの重要な設計的側面がこの設計規格にまとめられており、そのいくつかは単純な数式に要約されています。高電圧PCBの場合、IPC-2221計算機を使用すると、PCB上の導電要素間の適切な間隔要件をすばやく判断できます。これにより、次の高電圧基板が動作電圧で安全に保たれるようになります。設計ソフトウェアにこれらの仕様が自動化された設計ルールとして含まれている場合、生産性を維持し、基板を構築する際のレイアウトの間違いを避けることができます。 IPC-2221とは IPC-2221(2012年発効のレビジョンB)は、多くのPCBの設計的側面を定義する、一般的に受け入れられている業界規格です。例えば、材料 (基板やメッキを含む)、試験性、 熱管理とサーマルリリーフ、 アニュラリングなどに関する設計要件が挙げられます。 一部の設計ガイドラインは、より具体的な設計規格に取って代わられています。例えば、IPC-6012とIPC-6018は、それぞれリジッドPCBと高周波PCBの設計仕様を提供します。これらの追加規格は、一般的なPCBのIPC-2221規格とほぼ一致するように意図されています。 ただし、IPC-2221は通常、製品の信頼性や製造歩留まり/欠陥を評価するために使用される認定規格ではありません。リジッド基板の場合、IPC-6012またはIPC-A-600のいずれかが、製造されたリジッドPCBの認定に通常使用されます。 IPC-2221B 高電圧設計における導体スペーシング 高電圧PCB設計の重要な設計要件は、IPC-2221B規格で指定されています。これらの1つは導体クリアランスであり、次の2つの点に対処することを目的としています。 高電界強度でのコロナまたは絶縁体破壊の可能性 樹枝状成長と呼ばれることもある導電性陽極フィラメント形成の可能性( 下記参照) 最初のポイントは、PCBの導体間に適切な最小クリアランスを設定することで最も簡単に制御できるため、最も重要です。2番目の影響は、適切な配線間隔、 材料の選択、処理での一般的な清浄度によっても抑えることができます。これらの影響を防ぐために必要な間隔は、IPC-2221規格の2つの導体間の電圧の関数としてまとめられています。 下の画像は、IPC-2221規格の表6-1を示しています。これらの値は、2つの導体間の電圧の関数として最小導体間隔を示しています。これらの値は、導体間のピークACまたはDC電圧のいずれかで指定されます。IPC-2221では、500Vまでの電圧に対して固定された最小導体間隔値のみを規定していることに注意してください。2本の導体間の電圧が500Vを超えると、下表に示す電圧ごとのクリアランスの値を用いて、最小導体間隔を計算することになります。500Vを超える各電圧は、表の一番下の行に示されている量だけ、必要な最小クリアランスに追加されます。 高電流時の温度上昇 すべての高電圧PCBが高電流で動作するわけではありませんが、高電流を使用するPCBは、導体の大きさが十分でない場合に高温上昇になる可能性があります。PCBの温度上昇は、導体のDC抵抗に関連するジュール熱によって発生します。したがって、高電流を流す導体の断面積は、電流も大きい場合は大きくする必要があります。 記事を読む
高電圧設計におけるPCBリーク電流と絶縁破壊 高電圧設計におけるPCBリーク電流と絶縁破壊 1 min Blog オームの法則:これは、あらゆるタイプの回路を分析するために私たちが持っている素晴らしいツールです。この単純な関係は多くのデバイスに適用されるため、この一つの方程式でコンポーネントの振る舞いの多くの側面を簡単に説明できます。しかし、高電圧PCBの場合、回路の重要な側面を理解するためにオームの法則に加えて他のツールを使用する必要があります。パッシェンの法則とキルヒホッフの法則を取り入れれば、高電圧PCBの動作原理を理解するために必要なすべてが揃います。 高電圧で発生する重要な効果の一つに、PCBのリーク電流があります。この効果はオームの法則を使って非常に簡単に説明できます:ボード上の二点間に電位差がある場合、これら二点間の電流は抵抗が高いときに低くなります。PCBが運用に入ると、リーク電流はさまざまな理由で変化することがあります。設計者としてのあなたの仕事は、これらの問題を予測し、リーク電流を最小限に抑えるために適切な材料を選択することです。 PCBリーク電流とは何か? 高電圧設計の世界では、一般的にPCBや高電圧システム設計について話している場合、漏れ電流は2点間の直流電位差から生じます。PCB上では、電位差を持つ2つの導体が 絶縁基板によって分離されており、これら2つの導体間で基板を通じてある程度の電流が流れることがあります。約10Vの電位差で、基板の導電性に応じて約10nAの漏れ電流が生じることがあります。 ファイバーウィーブ基板やはんだマスク材料の多孔性により、製造中に水分を吸収し、運用中にも時間とともにこの水分吸収が続きます。エポキシガラスプレプレグ材料や製造前の基板の微細な亀裂にも水分が存在することがあります。湿潤製造プロセス中に水や他の液体が吸収され、保管中にPCBの表面に水分が拡散することがあります。 高湿度環境に配置されたPCBは、水分が飽和するまで水を吸収します。水分含有量が高いPCB基板は、PCB製造プロセス中に使用される水やその他の液体が極性を持つため、より高い漏れ電流を有します。これらは高い導電性を持つ傾向があります。時間が経つと、ボードが無湿度環境で準備され、展開前に徹底的にガス抜きされていたとしても、ボード全体の漏れ電流は増加します。湿度に加えて、小さなほこりの粒子がボード上に蓄積することがあり、電場が大きい領域ではほこりがより速く蓄積します。湿度とほこりの両方が、時間とともにPCBの漏れ電流の増加に寄与します。湿度とほこりの蓄積は、表面をアーク放電(すなわち、ボードの表面を横切る破壊電場が低下する)により感受性が高くします。 ほこりはPCBの漏れ電流の増加につながる可能性があります 高インピーダンス入力を持つコンポーネントのノード間に大きな漏れ電流が生じると、コンポーネントによって見られる入力電圧がIRドロップに似た形でかなり大きく低下することがあります。例として、PCBの漏れ電流が100 nAが1 MOhmの入力インピーダンスを持つコンポーネントの正負のリードを横切って流れる場合を考えてみましょう。オームの法則によると、これは入力電圧を0.1 V減少させます。これは、高電圧ボードの故障基準を決定する際に、PCBの漏れ電流と共に考慮すべきです。 クリープ距離、クリアランス、および漏れ電流 絶縁基板を横切る漏れ電流は、DC電圧差があるだけで発生することがありますが、2つの帯電導体間で初期のブレークダウンが発生した後、漏れ電流は増加します。2つの導体間でブレークダウンが発生した場合、炭素がPCBの表面に沿って蓄積することがあります。炭化した表面に形成されるトラックはかなり導電性が高く、高い電位差を持つボード上の2点間の漏れ電流を増加させます。非常に深刻な炭化、例えば炭素豊富な雰囲気でのブレークダウンや繰り返しのブレークダウンイベントは、ボード上の2点間に実質的に短絡を形成することがあります。 IPC 2221Bは、電圧、高度レベル、およびコーティングに応じた クリープ距離とクリアランス距離をカバーする一般的な標準です。この標準は高度に応じてこれらの距離を指定していますが、導体間の空気の大気圧が実際に絶縁破壊電界を決定するパラメータである(パッシェンの法則による)。空気中の水分含有量も絶縁破壊電界に影響を及ぼすだけでなく、時間の経過とともに漏れ電流が増加する可能性もあります。これらの要因はクリープ距離とクリアランス要件にも影響を与えます。高電圧システムは、安全上の目的と漏れ電流を減少させるために、一般的に過設計されるべきです。 もし基板が湿度の高い環境で使用される場合、完成した基板から湿気を取り除くことにほとんど意味はありません。なぜなら、運用に置かれるとすぐに基板に再吸収されるからです。高電圧PCB用に設計された湿度保護のための絶縁 コンフォーマルコーティングがあります。 ほこりや残留物の問題がある基板の場合、PCBから汚染物質を除去するために簡単な洗浄手順が十分です。これには、イソプロピルアルコールで基板をブラッシングし、脱イオン水で洗浄した後、数時間85°Cで基板を焼くことが含まれます。水溶性フラックスを含む基板に溶剤を使用する際には、これらの材料を混合すると、基板が乾燥して焼かれた後に塩の沈殿物が残る可能性があるため、依然として注意が必要です。 記事を読む