Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
Thermal Management
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
Thermal Management
Thermal Management
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
電気技術者
機械エンジニア
PCB設計者
ソフトウェア
Altium Designer
サーマルプロトタイプPCBの設計方法
1 min
Blog
電気技術者
PCB設計者
熱プロトタイプは、さまざまなコンポーネントに対する熱負荷を実験する機会を提供します。これらのPCBをどのように設計し、それらから何を学ぶことができるかについて説明します。
記事を読む
シミュレーションの代わりに熱プロトタイピングを使用すべき理由
1 min
Blog
電気技術者
PCB設計者
設計における潜在的な問題の中で、熱的な課題は予測が最も難しいものの一つです。また、熱管理の問題に気づくのは、既にプロトタイプを作成し、テストを開始した後のことが多いです。その時点で、機械設計チームはエンクロージャーの変更、冷却機構の追加、製品の多くの仕様の変更を行う必要があります。熱問題が発生した後で仕様を変更するには遅すぎます。 これらの問題に対する解決策は何でしょうか?ほとんどのEDAベンダーは熱シミュレーションアプリケーションを推奨し、その後で追加のライセンスを販売しようとします。熱シミュレーションアプリケーションが悪いと言っているわけではありませんが、PCB設計を行う前に、低リスクで行える少量の作業があります。ここで熱プロトタイプを作成し、理想化された製品に対して熱シミュレーションを実行する前にこれを行うべきです。 熱プロトタイプPCBとは何ですか? 熱プロトタイプは、完全な電気および機械設計を仕上げる前に、PCBの熱管理問題を特定するために使用できるシンプルなテストPCBです。一部のコンポーネントと回路は、回路の想定される電力レベルで動作するシンプルなプロトタイプボードを構築することによって検討され、その熱要求は測定から決定することができます。シミュレーションデータに頼るのではなく、PCBからの実際のデータを得ることで、実際の洞察を得ることができます。 熱プロトタイピングのもう一つのアプローチはシミュレーションにありますが、これが常に最善の道であるわけではありません。しかし、熱シミュレーションには具体的に何が問題なのでしょうか? 実際のところ、シミュレーションを使用すること自体に問題はありません。問題は、これらのアプリケーションが複雑で高価であることです。一部の熱シミュレーションアプリケーションは、PhDレベルの知識とスキルを必要とし、比較的正確な結果を保証するために設定します。また、シミュレーションモデルに多くの入力が必要であり、これらはしばしば大まかな推定に基づいて決定されます。そして、シミュレーションソフトウェアのコストがあります:使いやすいソフトウェアは通常、最も高価な価格タグが付いています。 明らかに、これらすべてが熱シミュレーションアプリケーションをほとんどの設計者にとって手の届かないものにしています。代わりに、電力要求と熱処理の限界まで押し上げることができる小さなテストボードを構築することを検討してください。たとえば、熱プロトタイプを使用して次のことができます: 電力エレクトロニクス回路で直接 温度測定を取得する テスト回路で様々なコンポーネントを試す テスト回路でスタックアップオプションを試してみる 開発ボードや評価キットと熱プロトタイプを統合する 熱プロトタイプに使用すべき回路の種類は?熱プロトタイピングに値するいくつかの良い例の回路があります: 特に ゲートドライブ を含むスイッチング電源回路、パワーMOSFETを搭載した回路、特にMOSFETアレイ 特定のプロセッサやASIC 温度に敏感なコンポーネント、例えば高精度アナログインターフェース、リファレンスなど 一部のRFコンポーネント、特に高周波数パワーアンプ これらのコンポーネントは、顕著な熱を発生させる可能性があり、積極的な冷却戦略が必要になる場合があります。設計の意図がエンクロージャを通じて、または別の受動的戦略で熱を管理することである場合、これらのデバイスは冷却アプローチを完全に理解するためにエンクロージャと一緒にテストする必要があります。熱プロトタイプは、その両方を行う機会を提供し、いくつかの利点をもたらします。
記事を読む
助けて、私のPCBエンクロージャーがオーブンになってしまった!
1 min
Blog
機械エンジニア
PCBのエンクロージャが熱を閉じ込めてしまうと、基板が過熱し始めます。余分な熱を放出するエンクロージャの設計方法を見てみましょう。
記事を読む
PCBトレースの電流と温度を算出するIPC-2221計算機
1 min
Blog
IPC-2221規格は、特定の温度上昇制限に対するトレース電流の上限の計算方法に関するガイダンスを提供します。
記事を読む
ヒートシンク設計の基本と原則の概要
1 min
Thought Leadership
私は、大学で楽器を演奏していましたが、先生はいつも「基本を大切に! 」と言っていました。そのため、何時間も続けて音階を練習し、ほとんど何も考えずに、音階やその変化形を演奏できるようになりました。電気エンジニアにとって、基本を、そして基本がどう成果物に影響するかを覚えておくことは、重要です。普通、私は、高レベルのシステムを用いて業務を行いますが、高度な用途に影響する簡単な原則を忘れがちです。熱管理とヒートシンクの場合、覚えておくべき主な3点は 対流、伝導、放射 です。これらの3つ基本が、フィンの配置や向き、熱伝導材料(TIM)、ヒートシンクの表面処理などに影響します。これら全てがどのようにかみ合うかを思い起こせば、ヒートシンク設計は簡単になるでしょう。 対流 先生からの別の金言に「音楽は自然に」というのがありました。これは、必ずしも対流に当てはまりません。基板では2種類の対流が利用できます。自然対流と強制対流です。自然対流は、空気を動かすのにファンや外部の力を利用しません。加熱具合が異なる流体に自然に発生する、対流によって起こります。この受動プロセスは電力を使用しませんが、冷却に少し時間がかかる場合もあります。強制対流はその逆で、空気を動かすのに外部の力を利用します。通常、この力に、ファンなどが使用されます。この方法では、外部の力に電力を供給する必要がありますが、代わりに、冷却は早くできます。興味深いことに、どちらの方法を選択するかが、ヒートシンク設計に影響します。 自然対流の場合、空気の動きを妨げないように、ヒートシンクとフィンを配置する必要があります。自然対流では流れが非常に弱く、多少でも妨げられると、冷却を大いに抑制します。ヒートシンクを置くとき、空気が フィンを通って平行に上昇 できるよう、ヒートシンクの向きを決める必要があります。フィンを気流に垂直に置くのは、逆立ちして楽器を演奏しようとするようなものであり、うまくいきません。フィン自体も 間隔を空けて配置 する必要があります。フィン同士の間隔が狭いと、対流を妨げます。 強制対流を扱う場合、簡単な面と複雑な面の両方があります。気流は保証されていますが、気流の最適化だけが問題です。前述しましたが、フィンと平行に空気が通過するようにヒートシンクの向きを決めます。フィンの設計が、少し注意を要する点です。強制対流の主な問題点は、圧力低下と損失です。フィンが高すぎる、またはフィンの間隔が狭すぎる場合、 ヒートシンクでの圧力低下 が過度になり、損失の大きいシステムになります。完璧なフィンのサイズや配置を見つけたい場合、 計算 が必要です。 オーケストラを指揮(conduct)するのと熱を伝導(conduct)するのとは、違います! 伝導 オーケストラでは、指揮者は指揮棒を使って指示を空中に出します。まるでラジオのアンテナのようです。回路での伝導は正反対です。伝導では、直接接触する物体同士の間で熱を伝えます。伝導に対処するときには、ヒートシンクの設置場所、その材料、ヒートシンクを基板に取り付けるのに使用するTIMについて考える必要があります。 ヒートシンクを配置することは重要です。冷却を最大化し、同時に使用スペースを最小化したいと考えます。実際、そもそも
記事を読む
Pagination