Easy, Powerful, Modern

The world’s most trusted PCB design system.

Altium Designer - 回路・基板設計ソフトウェア

Filter
0 Selected Content Type 0 Selected 全て Software 0 Selected 全て Clear ×
Clear
0 Selected Content Type
0 Selected Software
長期ライフサイクル製品のコンプライアンス成功 長期ライフサイクル製品のコンプライアンス成功 航空宇宙、医療、自動車など、高信頼性が求められるプリント基板(PCB)を必要とする産業において、コンプライアンスの成功が最優先事項であることは事実ですが、長期間使用を設計する際には、コンプライアンスの課題はさらに強化されます。変化する規制環境、材料の陳腐化、複雑で相互依存するサプライチェーンが、コンプライアンスの成功を困難にします。 幸いなことに、適切なツールを統合して文書管理、トレーサビリティ、部品選択、テストをより良く管理することで、企業はコンプライアンス努力を重要な段階で合理化し、長期間使用されるPCBのコンプライアンス成功を効果的に達成することができます。 以下では、長期間使用されるPCBがその運用寿命を通じて厳格なコンプライアンス基準を満たすための7つの課題と戦略、およびコンプライアンス成功を形作るために設計されたAltiumの技術について探ります。 課題1: 長期間使用されるPCBのコンプライアンスの複雑さ 長期間使用されるPCBは、設計と製造の段階から、アップグレードや交換が必要になる後の要件に至るまで、潜在的なリスクを導入する技術的および規制的な側面に注意を払いながら、性能とコンプライアンスのために設計されなければなりません。主な課題には以下が含まれます: 規制の変化:コンプライアンス基準は、新技術、市場ニーズ、環境への配慮に合わせて進化します。当初コンプライアンス基準を満たしていたPCBも、時間の経過とともに 規制の変更によりコンプライアンスの問題に直面することがあります。これは、RoHS、REACH、業界特有の要件などの基準の更新に遭遇し、特に10年以上の使用が見込まれる場合、そのコンポーネントや材料に影響を与える可能性があります。 サプライチェーンの複雑さ:PCBサプライチェーンのグローバル化は、異なるコンプライアンス法を管理することを意味し、材料やプロセスが統一基準を満たしていることを保証することを困難にします。 陳腐化リスク:コンポーネントの入手不可や、廃止された材料やプロセスによるコンプライアンスの欠如を避けるためには、予防的な計画が必要です。なぜなら、代替部品が元のコンポーネントの正確な仕様や規制基準を満たしていない可能性があるからです。 Altiumのソリューション:データとコラボレーション 規制の絶え間ない変動は、長寿命PCBのコンプライアンス成功にとって、変更の継続的な監視と設計および生産の適応性が重要です。 Altium Designerおよび Altium 365は、この分野でのゲームチェンジャーであり、リアルタイムの規制監視、サプライヤーデータ管理、進化するコンプライアンス要件を効率的に管理するための包括的な文書化を支援する機能を提供します。 Altium Designer: 外部データベースとの統合を通じて、Altium Designerはベンダーの規制情報や材料のコンプライアンスデータへの直接アクセスを提供し、リアルタイムデータに基づいてコンプライアンスのあるコンポーネントを選択できるようにすることで、ライフサイクルの後半での非コンプライアンスのリスクを減らします。
AIビジョンとKria KV260ビジョンAIスターターキット Altium Designer Projects AIビジョンとKria KV260ビジョンAIスターターキット Kria KV260 Vision AI スターターキットの始め方では、AMD Xilinxから提供されているKria KV260 Vision AI スターターキットを開封し、遊んでみました。このボードは、Ubuntuの完全なディストリビューションを実行できるほど強力なFPGAとARMプロセッサを提供します。この記事では、Raspberry Piカメラを使用してSmartCamアプリケーションを構築し、実行します。このアプリケーションは、リアルタイムで顔を検出し、コンピューターモニターにその様子を表示することができます。 このチュートリアルを書いた理由 このチュートリアルは、AMD Xilinxの方々がまとめた 元のチュートリアルに続くものです。このチュートリアルの多くが、彼らのものと非常に似ている(同じである)ことに気づくでしょう。このチュートリアルを初めて見たとき、圧倒される感じがしました。私はFPGA設計にかなり詳しい背景を持っていますが、彼らのチュートリアルを一つ一つ丁寧に進めることは時には難しく、少し気が重くなることがあります。もう少し直感的で、簡単にフォローできるものを探していました。他の人が書き直したチュートリアルをじっくりと読んだ後、私が見つけたものにはあまり満足できませんでした。それゆえ、自分自身で書くことにしました。 もし詳細な情報を求めているなら、元のチュートリアルを確認することを強くお勧めします。いくつかのステップは非常に明確ではありませんが、このチュートリアルではそれらを乗り越える(あるいは回避する)試みをしています。最も重要なことは、この記事を書いている時点で、サンプルのSmartCamアプリケーションは最新のファームウェアでは動作しないようでした。 フォークしたリポジトリでは、デモをスムーズに起動できるように自動化スクリプト(さらには必要な最終フラッシュファイルまで)を作成しました。このチュートリアルを手に入れたことで、できるだけ早くハードウェアターゲットでのAIに飛び込み、デモを成功させた後に私が感じた「わお」の瞬間を体験できることを願っています。 ハードウェアの前提条件 もちろん、AMD Xilinxの
電子部品 エンジニアリングの学生が必ず知っておくべき電子部品トップ10 電子機器の基本的なコンポーネントを理解することは、どのエンジニアにとっても重要です。初めてのプロジェクトを始める場合でも、スキルを磨く場合でも、これらのコンポーネントを知っていることが、効果的な回路を設計し、構築する能力を高めます。このガイドは、電子設計の旅を通じてよく遭遇する主要なコンポーネントを理解するのに役立ちます。また、 学生ラボのリソースを使用してプロジェクトを実現する方法についても説明します。— Mouser Electronicsのモジュールは、現在Altium Educationのカリキュラムの一部となっています。 これらは、すべての学生エンジニアが知っておくべき10の必須コンポーネントです: 1. 抵抗器 あらゆる回路の基盤であり、抵抗器は電流の流れを制御します。電流を制限することで、コンポーネントへの損傷を防ぎます。 機能: コンポーネントを保護し、信号レベルを制御するために電流の流れを制限します。 応用: 電圧分割器: 入力電圧を分割して特定の電圧出力を作り出します。 電流制限器: コンポーネントを損傷する可能性のある過剰な電流を防ぎます。 選択: Mouser Electronicsを通じて、固定抵抗器、可変抵抗器、精密抵抗器の幅広い選択肢を探索します。 プロのヒント
ADのWB Altium Designerにおけるワイヤーボンディング はじめに ワイヤーボンディング技術は年々進化しており、その使用例や応用分野も広がっています。デバイスがよりコンパクトでパワフルになるにつれて、設計者は複雑なインターコネクトを扱うための正確なツールが必要とされ、Altium Designerは、チップ・オン・ボード(COB)設計やキャビティ内のスタックダイ、その他の高性能アプリケーションでのワイヤーボンディングを効率化する機能を提供しています。この記事では、Altium Designerの高度なワイヤーボンディング機能と、それが信頼性をどのように保証するかについて探ります。 Altium Designerにおける高度なワイヤーボンディング技術 Altium Designerのワイヤーボンディングツールは、新しい機能の範囲を提供し、PCB設計に高度なボンディング技術を取り入れることを容易にしています。いくつかの注目すべき機能を見てみましょう: キャビティ内のスタックダイ用ワイヤーボンディング:ユーザーは、キャビティ構造内のスタックダイに必要な複雑なインターコネクトを簡単に扱うことができるようになりました。これは3D集積回路としても知られています。レイヤースタックマネージャーのリジッド&フレックスアドバンスドモードを利用することで、ダイ構造とダイパッドを簡単に描画し、異なるスタックアップに配置して3D構造を作成することができます。Altium Designerの3Dビューでのワイヤーボンドの可視化機能により、設計者はワイヤーボンドのループ高さ、長さ、直径、およびパスが設計の電気的および機械的要件に最適化されていることを確認できます。これらの3Dビジュアライゼーションは、高度なコンピューティングおよびモバイルデバイスで使用されるスタックダイ構造の典型的な細ピッチおよび高ピン数を管理する際に重要です。 キャビティ内のスタックダイワイヤーボンディング(3D集積回路) ダイ間ワイヤーボンディング:Altium Designerのワイヤーボンディングツールは、ダイ間ワイヤーボンディングを可能にします。これは、寄生インダクタンスと信号干渉を最小限に抑えるために使用される技術です。複数のダイを中間のフィンガーパッドや銅の流れなしで直接ワイヤーボンドで接続することができ、ループ長を短縮し、高周波および高電力アプリケーションの性能を最適化します。 ダイ間ワイヤーボンディング ダイから銅プールへのワイヤーボンディング:多くのパワーエレクトロニクスや高電流アプリケーションでは、ダイを直接銅プールに接続することが、効果的な熱および電気性能を実現するために不可欠です。Altium Designerのワイヤーボンディングツールは、PCB上のダイと銅プールエリアとの間の正確なワイヤーボンディングを可能にすることでこれをサポートします。この方法は、熱の放散と電流処理能力が重要なパワーマネジメントモジュールなどの高電力設計に特に有用です。大きな銅プールに直接ボンドワイヤーを接続することを可能にすることで、設計者は電気および熱性能が最適化され、追加のインターコネクトやビアの必要性を減らすことができます。 銅プール上の複数のワイヤーボンド 同じダイパッドのための複数のワイヤーボンド:Altium Designerのワイヤーボンディングツールは、電流運搬能力を高め、インピーダンスを減少させるために、同じダイパッドからの複数のワイヤーボンドもサポートします。この技術は、ダイを通じてより高い電流が流れるパワーエレクトロニクスや高性能アプリケーションにおいて特に重要であり、電気負荷を分散させるために追加のワイヤーボンドが必要になります。複数のワイヤーボンドは、個々のワイヤーボンドにかかるストレスを減少させることで機械的信頼性も向上させ、高ストレス環境での熱および電気性能を強化します。 パッドの整列と向き:成功したワイヤーボンディングプロセスには、適切なパッドの整列と向きが不可欠です。Altium
WB 記事 1 ワイヤーボンディング:現代の応用、技術トレンド、およびコストに関する考慮事項 はじめに ワイヤーボンディングは、半導体ダイをパッケージリードフレームや回路基板に接続するための主要な方法として長らく支配的であり、特にチップ・オン・ボード(COB)技術では、ダイが直接PCB上に搭載される場合に多く用いられています。ワイヤーボンディングによるCOBは、その信頼性と大量生産におけるコスト効率の高さから、電卓や初期のデジタルデバイスなどの消費電子製品で人気を博しました。 時間が経つにつれて、ワイヤーボンディングCOBは、小型化と高性能化の要求に応えるために進化し、パワーLED、イメージセンサー、パワーエレクトロニクス、高性能コンピューティングなどのアプリケーションで重要な技術となりました。今日では、ワイヤーボンディングはマイクロエレクトロニクス業界における第一レベルの接続の75-80%を占め、コンパクトで高性能な設計において信頼性の高い接続を提供しています。 電子機器におけるワイヤーボンディングの現代的な応用 ワイヤーボンディングは、幅広い現代のアプリケーションで使用されており、柔軟性、信頼性、コスト効率を提供します。主な分野には以下のようなものがあります: 3D集積回路(IC):3D ICでは、複数の半導体ダイが垂直に積み重ねられており、これらの層を接続するためにワイヤーボンディングが不可欠です。デバイスがよりコンパクトになるにつれて、高密度処理能力への需要が高まり、細かいピッチと高いピン数を管理するためにワイヤーボンディングが不可欠になっています。この技術は、高性能コンピューティング、先進的なモバイルデバイス、高密度デジタル電子機器にとって重要です。 ワイヤーボンドを使用した3D積層ダイ パワーエレクトロニクスとワイドバンドギャップ半導体:電気自動車や再生可能エネルギーシステムなどの高電力アプリケーションで使用されるシリコンカーバイド(SiC)や窒化ガリウム(GaN)などのワイドバンドギャップ半導体のパッケージングには、ワイヤーボンディングが不可欠です。これらの半導体は高電圧と高温で動作し、より高い電流負荷を処理し、効率的な電力管理を確保するために、しばしば太いゲージの銅ワイヤーボンディングが使用されます。 ワイヤーボンディングされたパワーモジュール(画像出典:Electronics Weekly, “Powering UP”, 2022年4月 光電子工学とイメージセンサー:イメージセンサーの解像度が高くなると、必要な接続数が劇的に増加し、細いワイヤーボンディングが不可欠になります。これらの高性能、高密度設計は、先進的な消費者向け電子機器、医療診断、セキュリティシステムにとって重要です。 CMOSイメージセンサーCOBとワイヤーボンド【画像出典:アルバータ大学、Sensors 2011に掲載】 チップ・オン・ボード(COB)LED: COB技術はLED設計で広く使用されており、より高いルーメン密度と改善された熱管理を提供します。ワイヤーボンディングにより、効率的な熱放散を持つコンパクトなLEDアレイが可能になり、自動車、産業、消費者向けアプリケーションでより明るく長持ちする照明ソリューションにつながります。 COB
Altium Need Help?