Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
Altium Designer
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Easy, Powerful, Modern
The world’s most trusted PCB design system.
Explore Solutions
Altium Designer - 回路・基板設計ソフトウェア
All Content
Customer Stories
Filter
Clear
Tags by Type
全て
Altium Designer Projects
Altium Live
Engineering News
Guide Books
Newsletters
OnTrack
Podcasts
Videos
Webinars
Whitepapers
Thought Leadership
Popular Topics
全て
3D
Components
Electronics Design Collaboration
Design Outputs
HDI Design
High-Speed Design
Multi-Board
PCB Layout
PCB Routing
Power Integrity
RF Design
Rigid-Flex
Schematic Capture
Signal Integrity
Simulation
Manufacturing
Supply Chain
Software
全て
Altium 365
Altium Designer
Altium Enterprise Solutions (Formerly Altium Nexus)
Altium Training
Octopart
Power Analyzer (Keysight)
CircuitMaker
Altium Vault
Circuit Studio
Concord Pro
Tasking
PDN Analyzer (Legacy)
Non-Altium Products
Newsletters
Altium、Embedded World 2024で最新の革新を発表
Embedded World 2024でAltiumの最新イノベーションを発見しましょう。ブース4-305では、業界の専門家が電子機器の作成、インテリジェントな部品調達、および設計生産性の向上のための統合プロセスを紹介します。Altiumのエコシステムに接続し、電子開発の未来を形作りましょう。
Altium Designer Projects
Pi. MX8 プロジェクト - ボードレイアウト パート1
Pi.MX8オープンソースコンピュータモジュールプロジェクトの第3回へようこそ!この記事シリーズでは、NXPのi.MX8Mプラスプロセッサをベースにしたシステムオンモジュールの設計とテストについて詳しく説明します。 前回の更新では、モジュールの回路図の構造を見て、予備的な部品配置の準備を始めました。部品を配置した今、設計の密度とそれがレイヤースタックに要求することがどの程度かがよくわかります。今日は、適切なスタックアップを選択し、最初のトラックのルーティングを開始します。 レイヤースタックの定義 部品配置といくつかの戦略的要因に基づいて、今後の設計に使用したいPCB技術とレイヤースタックを決定できます。まずは部品の密度を見てみましょう: 部品配置 トップサイド 予備的な部品配置により、全体的な設計の密度が適度であることが明らかになりました。アクティブな部品はすべて基板のトップサイドに配置され、ボトムサイドには主にデカップリングキャパシタやその他の受動回路が含まれています。そのため、基板のボトムサイドは比較的空いており、ルーティングスペースがたくさんあります。しかし、目標は、このスペースをPi.MX8モジュールが特定の要求に基づいて更新および拡張されるプラットフォームとして機能するために実装される追加機能に割り当てることです。 部品配置 ボトムサイド ボード間コネクタに近い部品の配置を見ると、多くの部品がボードの反対側にあるコネクタの直上に配置されていることに気づきます。上層から下層まで全てのレイヤースタックを接続する標準的なVIAのみを使用することにした場合、これらのエリアにVIAを配置することはできません。ボード間コネクタの全てのピンをブレイクアウトし、コネクタの反対側にあるアクティブ回路を効率的にルーティングするためには、スルーホールVIAのみに頼ることを超えた方法を考案する必要があります。これには、HDIスタックアップを使用する必要があります。 HDIスタックを使用すると、後の段階でモジュールの機能を拡張することが容易になります。追加の部品を接続するためにスルーホールVIAを必ずしも使用する必要がなく、したがって、確立されたルーティングや部品配置をあまり妨げることなく済みます。 Pi.MX8モジュールには、2+N+2レイヤースタックを使用します。これはIPC-2226規格で定義されているタイプIIIレイヤースタックであり、最も一般的に使用されるHDIスタックの一つです。 このタイプのスタックアップは、製造プロセス中に2回の連続した積層工程を使用して、最外層の3層を接続するマイクロVIAを可能にします。埋め込みVIAは、連続製造プロセスの一部ではないコアスタックを接続するために使用されます。このタイプのレイヤースタックで使用されるプリプレグとプリプレグの厚さは、PCBプロバイダーの製造能力に依存します。連続積層されたプリプレグの選択された厚さは、マイクロVIAのアスペクト比によって制限されます。機械的にドリルされたVIAとは異なり、マイクロVIAは短いレーザーパルスを使用してプリプレグに穴を開けることによって作成されます。通常、VIAの直径は0.08mmから0.15mmが使用されます。大量製造に適したアスペクト比は通常、0.6:1~0.8:1の範囲です。 薄いプリプレグは、アスペクト比の要件を違反せずに、与えられたインピーダンス制御トレースのトラック幅を減少させることを保証します。上層または下層の単純なマイクロストリップで、参照平面が1つだけの場合、これは問題ではありません。しかし、最初のグラウンドプレーンの下にある埋め込みストリップラインには注意が必要です。ストリップラインの上下の参照平面までの短い距離が、特定のインピーダンス制御インターフェースのために非常に狭いトレースをもたらす可能性があります。 Pi.MX8ボードの最終スタックアップは、PCBメーカーとの協力のもとに作成され、以下のようになります: Pi.MX8レイヤースタック 全体として、このモジュールは10層スタックアップで構築されます。トップ、L2、L7、およびボトムレイヤーが信号レイヤーとして使用されます。L1、L3、L6、L8レイヤーがグラウンドプレーンとして使用されます。残りの2層、L4とL5は電源プレーンとして機能します。電源プレーンは、わずか18μmの厚さの薄い箔を使用して構築されます。これらの層のIRドロップに注意を払う必要があります。電源プレーンは、隣接するグラウンドプレーンとわずか75μmのプリプレグで分離されて密接に結合されています。これにより、追加のプレーン容量が生じ、高周波で低PDNインピーダンスを提供するのに有益です。レイアウトが完成したら、PDNの挙動をシミュレーションで確認します。 このスタックアップについて注意すべきもう一つの重要な点は、スタックされたマイクロビアではなく、スタッガードマイクロビアのみを使用することです。これは、マイクロビアを直接重ねて配置することができず、代わりに少なくとも0.35mmのピッチで中心から中心にオフセットする必要があることを意味します。スタッガードビアの使用は、連続するレイヤーの登録を容易にするため、一部のPCBプロバイダーでは製造コストを削減します。このアプローチは、2つ以上のマイクロビアプログラムを使用するHDIスタックアップで、マイクロビアの信頼性を高めるためにも推奨されます。スタッガードマイクロビアを使用するデメリットは、最小オフセット要件を満たすために必要な追加のスペースです。グラウンドプレーンに作成された空隙も、隣接するトレースのリターンパスを管理する際に考慮する必要があります。 コンポーネントブレークアウトルーティング レイヤースタックが定義された今、次のステップは個々のコンポーネントの信号をブレークアウトすることです。このステップでは、各コンポーネントの信号および電源ルーティングに必要なビアを配置します。コンポーネントを接続し始める前に、できればすべてのビアを配置しておきたいと考えています。HDIスタックアップであっても、ビアは依然として多くのスペースを占めます。これは、通常、スタックアップ全体を通過する電源配布ネットワークの一部であるビアに特に当てはまります。ルーティング段階でビアを配置すると、ビアのためにスペースを作るために以前にルーティングされたトレースを削除する必要があるかもしれません。
エレクトロニクス用の配線ハーネスの種類
マルチボードPCBやその他多くのシステムは、電力と信号の接続を行うためにワイヤーハーネスに依存しています。ここでは、使用できるワイヤーハーネスの種類を紹介します。
初回のPCB製造ロットでの数量
初めての大規模なPCB製造では、適切な量を使用するか、LRIPコンセプトに従うべきです。初回生産に使用すべきことはこちらです。
Altium Designer Projects
設計フェーズ - リッドアセンブリ電子部品 パート2
オープンソースラップトッププロジェクトシリーズへようこそ!これまでに、蓋組み立て電子部品の機能とコンポーネント選択について議論し、回路図のキャプチャについて詳しく見てきました。そして、PCBレイアウト設計のためのプロジェクトの準備が整いました。 このアップデートでは、ウェブカメラボードのPCB設計に取り組みますが、いくつかの予想される課題があります。例えば、ボードの全体的な小さなフォームファクターを扱うことや、顕微鏡で見るようなウェブカメライメージセンサーをブレイクアウトすることです。 イメージセンサーパッケージ ウェブカメライメージセンサーとマッチングフットプリントをより詳しく見てみましょう。イメージセンサーOV2740は、いくつかのパッケージで利用可能です。イメージセンサーは、通常、PCBに直接接着またははんだ付けされる裸のダイとして販売されます。その後、センサーは必要なすべての信号をブレイクアウトするために、薄い金のボンディングワイヤーを使用してボードに接合されます。 PCBに接合されたOV2740ダイ 完全にパッケージされたセンサーではなく、裸のダイを使用する理由はいくつかあります。最も顕著な3つの理由は、コスト、フォームファクター、および光学特性です。まず、コストを考えてみましょう:イメージセンサーを光学性能に影響を与えずにパッケージングすることは、高価なプロセスです。パッケージなしでセンサーダイを直接PCBに接合することで、パッケージングコストを節約できますが、組み立て/製造コストは高くなります。PCB上の光学コンポーネントを接合するには、通常、クリーンルーム設定および接合可能なPCB表面仕上げが必要です。これらのオプションは製造コストを押し上げるため、直接ダイアタッチは通常、大量生産または高度に特殊化された製品にのみ実行可能です。 直接ダイアタッチ方法を選択するもう一つの良い理由は、特にラップトップやスマートフォンのような密集したカメラソリューションで、全体的なソリューションの高さを減らすことです。Z軸でのわずかなミリメートル単位の差が重要です。イメージセンサーのアクティブダイがボード表面から0.5mm上にある場合、その余分な高さはレンズアセンブリによって補償されなければなりません。これは、しばしばイメージセンサーとレンズのスタック全体の厚みを増加させる結果となります。 さらに、レンズアセンブリの取り付けが容易であることは、裸のセンサーダイを利用するもう一つの説得力のある理由となります。歪みのない画像を得るためには、センサーダイがレンズアセンブリの軸に対して完全に垂直でなければなりません。レンズアセンブリは、PCB表面に機械的に参照され、その表面は画像センサーダイと完全に平行でなければなりません。例えば、画像センサーがBGAコンポーネントとしてパッケージされている場合、それが基板表面に対して完全に平行であることを保証することは困難です。この効果はレンズアセンブリによって補償される必要がありますが、直接ダイアタッチアプローチでは通常存在しません。 私たちのノートパソコンの設計では、製造コストの増加のため、センサーダイを直接PCB表面に取り付けることは選択肢ではありません。したがって、私たちはOV2740を細ピッチBGAコンポーネントとして使用します。 BGAパッケージのOV2740イメージセンサー イメージセンサーのフットプリント センサーパッケージは通常のBGAパッケージではなく、マルチピッチグリッドアレイです。私たちの場合、これはX軸とY軸ではんだボールのピッチが異なることを意味します: イメージセンサーのBGAフットプリント スクリーンショットは、BGAフットプリントがX軸で0.53mmのピッチを、Y軸で0.48mmのピッチを使用していることを示しています。これは、基板の設計と製造技術の選択にいくつかの意味合いを持ちます。ほとんどのPCBプロバイダーは、標準プロセスで0.1mmのトレース幅と間隔を製造できます。高い技術クラスに追加費用を支払うことなく標準の設計ルールを選択したい場合、センサーピンをY軸でのみブレイクアウトすることができます: BGAコンポーネントのブレイクアウト X軸のピンピッチがわずかに大きいため、2つのパッドの間に0.1mmのトレースを便利に配置することができます。X軸の第2行もブレイクアウトしたい場合は、ほとんどのメーカーが標準の設計ルールで対応できない0.09mmのトレース間隔を選択する必要があります。 イメージセンサーには5行あり、最も外側の2行のピンを問題なくブレイクアウトできます。中央に1行残っており、その行は上層からは到達できません。パッド間に0.4mmのパッドと0.2mmのドリルを持つVIAを配置することは、VIAからパッドまでの間隔が十分でないため、オプションではありません。これは、ほとんどの標準的なPCB設計ルールの限界です: VIAを備えたBGAフットプリント この時点で、PCB製造プロセスに追加のステップを使用できます。それは、VIAのプラグとキャップをすることです。キャップ付きVIAを使用することで、PCB組み立て中に信頼性の問題を引き起こすことなく、パッド内に直接VIAを配置できます。 この方法で、イメージセンサーのエスケープルーティングは次のようになります:
Customer Success Stories
Curtin University’s Binar Space Program
Discover how Curtin University’s Binar Space Program and Altium are advancing interest in STEM programs as well as the Australian space sector.
Pagination
First page
« First
Previous page
‹‹
ページ
17
現在のページ
18
ページ
19
ページ
20
ページ
21
ページ
22
Next page
››
Last page
Last »
他のコンテンツを表示する