Easy, Powerful, Modern

The world’s most trusted PCB design system.

Altium Designer - 回路・基板設計ソフトウェア

Filter
Clear
Tags by Type
Popular Topics
Software
Alternatives to Gerber RS-274X Whitepapers GERBER RS-274-Xに代わる形式 Gerber RS-274Xは、プリント回路基板設計ソフトウェアの事実上の標準形式であり、全世界で現在設計されているプリント基板の約90%の製造に使用されています。これほど多く使用されているにもかかわらず、Gerberには実際に多くの制約があるため、製造工程全体を通してさまざまな問題を引き起こす可能性があります。ただ、幸いなことにこれに対する解決方法があり、RS-274Xに内在する問題について対処するためのオープンスタンダードGerber X2とIPC-2581が策定されました。では、X2とIPC-2581ではできて、RS-274Xではできないことは何でしょうか? 業界標準に比べたこれらの形式の利点を理解するため、各形式について詳しく見てみましょう。 GERBER形式の歴史概略 Gerberファイル形式は、1960年代にGerber Systems Corporation(現在はUcamco社)により策定されました。初期の数値制御(NC)フォトプロッターシステムのリーディングプロバイダーであった同社は、自社のベクターフォトプロッターをサポートする最初の入力形式を策定しました。この形式は当時の数値制御規格EIA RS-274-Dのサブセットがベースになっていました。1980年に、Gerber Systems社は『Gerber Format: a subset of EIA RS-274-D; plot data format reference
Three Ways To Simplify Output Generation Using Altium Designer Whitepapers Altium Designerを使って製造データ出力を単純化する三つの方法 PCB設計から製造プロセスの過程で発生する遅延の多くは、製造とアセンブリのための正確なデータとドキュメンテーションで回避することができます。さらに、必要なデータを簡単に再現することは、PCB設計者と製造者の間のコミュニケーションのための大きな時間節約になります。Altium Designerで利用可能な出力ジョブ設定ファイルは、PCB設計の出力生成を制御し、最終的に単純化するための適切なソリューションを提供することができます。 なぜ出力生成プロセスをシンプルにするのか? 毎回、問題なく設計が終了すると、製造、実装のプロセスが始まります。多くの場合、このプロセスはそれ自体でプロジェクトになり、製造、実装担当者に送るためにさまざまなファイルを揃える必要があります。必要なファイルの典型は、部品表 (BOM)、ガーバーファイル、NCドリルファイル、ODB++ファイル、IPC-2581ファイル、Pick and Placeファイル、実装図面などです。 製造、実装の要件に応じて、このリストに他の項目を追加または削除することができます。また、最初にドキュメントを提出した後で、基板製造業者がプリント回路基板(PCB)設計者に新しいデータや追加データを求めることもよくあります。特定のフローを標準化したり、少なくともデータ生成の標準的な出発点を決めることで、設計後のプロセスをより簡単にすることができます。 基板設計と製造サイクル 通常、PCB設計者には、設計完了後に生成する標準的な一連のファイルがあります。必要な各ファイルを生成、アーカイブして、製造業者に送信する必要があります。これは、複数のステップからなるプロセスであり、特に新しいレビジョンや変更のためにこのプロセスを繰り返す必要がある場合は、貴重な時間を費やさねばなりません。これは、一般的な手順であり、生産性に影響を与える問題として当初は表面化しない可能性があります。ただし、製造、実装に必要なファイルの数により誤りの危険性があります。 下の図は、典型的なプリント基板製造のサイクルを示しています。 図 1: 製造サイクルに対する基本的な PCB設計 最初にデータを受け取った後、多くの基板製造業者は、新しいデータ、追加データ、あるいは基板設計者からの修正データが必要になる問題を見つけることに慣れています。新しいデータや修正データが要求されると、基板設計者は、必要な各ファイルを生成する最初のプロセスから実行しなければなりません。この再実行にかかる余分な時間は、PCB設計者が出力生成に使用する特定のプロセス、またはワークフローに大きく依存します。手順を繰り返すごとに時間と費用が失われるので、手順の再実行は全体的な生産性を損なう可能性があります。 PCB設計者と製造業者の間の流れは、可能な限りシームレスでなければなりません。特に、そのコミュニケーションは、製造プロセスのPCBにとって欠かせないからです。 出力の標準化 製造、実装のためのデータ、およびドキュメントをすべて生成し管理する一元的な方法があれば、設計者が直面する多くの課題に対する適切な解決策が得られます。 Altium
レイヤースタックを間違えないようにする方法 Whitepapers レイヤースタックを間違えないようにする方法 はじめに PCBの製造工程で最も犯しやすい間違いの1つは、層の順序の誤りです。確認しないままにしておくと、全工程が無駄になる場合があります。PCB実装工程を経た製品は、電気的導通の観点からは機能するかもしれません。電気的に導通していれば、電気的検査にも合格するかもしれません。しかし、プレーンや信号層の順序と層間の距離を最優先にしている設計では、最終的な実装段階で障害が発生します。 正しい順序で積層し、後工程外観検査を行うために必要な情報を製造業者に確実に伝えるには、そうした情報を銅パターンとして直接設計に組み込んでおく必要があります。これらの銅パターンを設計に含めるのはPCB設計者の責任です。 製造データ内に適切な銅パターンを設計しておけば、積層順序を間違える心配はほとんどなくなります。さらに、社内で品質保証検査を実施し、 工場への投入が可能になった後、これらの銅パターンを使って最終実装検査を行うことができます。 層の識別 各層の銅箔にまず追加するパターンは、その層が全体の中で何番目かを示すためのものです。各層に層番号を割り当てます。層番号は銅箔に直接エッチングされ、レイヤースタックアップ内での位置を示します。層番号を基板外形の外に配置しても、アートワークプロットがどの層を表しているかを示すのには不十分です。層番号は、完成基板の領域内に含まれている必要があります。 製造業者によっては、2次側層の層番号をミラー反転しておく必要があります。層番号は、回路の電気的特性に悪影響を与えないように基板の端の近くに配置する必要があります。層番号は、各層上に数字を1つ配置することで表すことができます。 しかし、それらの数字は上に積み重ねることはできません。全層のチェック用プロット図を重ねて上から見たとき、数字が全てはっきり見える必要があります。 識別しやすいように、多くの場合、層番号は長方形の箱の中に配置します。アセンブリの裏側に置いた検査光源で、完成PCBを透かして層番号が簡単に見えるように、はんだマスクとシルクスクリーンのパターンを層番号の周囲の領域から除去する必要があります。層番号は、層が全て存在することを示す印になります。また、アートワークプロット図が表す層を製造業者に示す印にもなります。(※続きはPDFをダウンロードしてください) 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!