Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
大学・高専
学生ラボ
教育者センター
Altium Education カリキュラム
Search Open
Search
Search Close
サインイン
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
Altiumのエキスパート
筆者について
最新の記事
PCBレイアウトの考慮事項:差動ペアの長さマッチング許容誤差と違反の回避
1 min
Blog
娘の髪の毛をとかすことは、PCBトレースの絡みを解くことを思い出させます。すべてのものを層に設定し、クロスオーバーは避ける必要があります。9歳の娘の髪の毛をとかすのに、PCBトレースのルーティングほど時間はかかりませんが、正しく行わないと同じくらい痛みを伴います。理想的には、あなたの娘の髪が電子機器のショートサーキットや小さな火花を引き起こすことはありません。 レイアウトでのトレースのルーティングは、おそらく最も重要で時間がかかる設計活動です。高速設計では、トレースの長さは非常に正確であり、特定の許容範囲内に収まる必要があります。特性インピーダンス、信号の整合性、レイヤースタックアップ、トレース幅を追跡することは、手間がかかり、時間がかかり、どのツールでも自動的に達成するのが非常に難しいです。 最高のPCB設計ソフトウェアを使用することで、最も厳しいルーティングのボトルネックを克服し、生産性を最大化することができます。最高の自動ルーティングおよび長さ許容範囲ツールを使用するだけでなく、業界が要求するシミュレーションツールにアクセスする必要があります。このようにして、あなたのデザインがどのようなインピーダンスも乗り越え、可能な限り最高の回路基板デザインを提供できるように信頼できます。 高速ルーティングと長さ許容範囲マッチング 高速信号は他の信号と相互作用する可能性が最も高く、その逆もまた然りです。ほとんどのエンジニアは、規定のルーティングルールに従うことができるように、これらの信号を最初にレイアウトします。最も重要な高速ルーティングルールの中には、長さ許容誤差のマッチング、別名長さチューニングがあります。 単終端および差動ペアルーティングは、異なるコンポーネントを一つの動作するシステムに接続する、その重要なタスクです。 高速デジタルシステムでは、複数のトレースのルーティングは非常に正確でなければなりません。デジタルデータが複数の入力を持つコンポーネント、例えばロジックゲートICを通して送信される場合、すべての入力に信号が同時に到着する必要があります。電子デバイスのデータ転送速度が上がるにつれて、複数のトレース間の許容される不一致の量は次第に小さくなります。トレースの長さは、デバイスでデータエラーを作り出さないように、正確に一致させる必要があります。 差動ペアでの長さ許容誤差のマッチングも、信号が同期されることを保証するために必須です。ネット内のコンポーネント間の接続が一致していない場合、ソフトウェアはレイアウト上に直接インジケーターで通知するべきです。すべてのソフトウェアが長さの不一致を修正することを容易にしているわけではありません。異なるプログラムには、トレースの長さを調整し、トレースの長さを調整することがドラッグアンドドロップコマンドと同じくらい簡単であるべきです。 すべてのネットが同じように作られているわけではありません。PCB設計ソフトウェアは、自動ルーティングとルールチェックのバランスを取りつつ、デバイスアプリケーションの要件に応じて設計をカスタマイズする自由を提供するべきです。複数の差動ペアや単線トレースをネットにグループ化する場合、各ネットに長さマッチング制約を簡単に定義できるPCBルールと制約エディタが必要です。 Altiumでの差動ペアルーティング 問題の原因を理解する レイアウトエディターで直接ルーティングを開始すると、トレースは事前定義された設計ルールを使用して配置されます。ルーティングに関する問題のいくつかは、特に粗悪な設計パッケージでの矛盾するルール設定によって生じます。貧弱な設計ソフトウェアは、実際にはボード全体にわたってトレースを誤って自動ルーティングし、最も極端なケースを除いて、このことが起こったことに気づかないかもしれません。これは特に差動ペアに当てはまります。 不適切な設計ソフトウェアは、トレースや差動ペアを誤ってルーティングするだけでなく、ルーティング機能を追加購入しない限り提供されません。これにより、手動でルーティングし、長さの許容範囲を目視で確認し、 ミアンダを手動で挿入するしかなくなります。合理的な時間内に少数のトレースをルーティングしたい場合は、これらの基本的な機能を購入する必要があります。それに、新たに発症した手根管症候群のための手首サポーターも必要になるでしょう。 ネット内のルーティングの不一致を修正するプロセスに実際に取り組む際には、隣接する単線トレース間および差動ペア内の各トレース間の不一致を示す明確な指標が必要になります。これは、トレースにミアンダをドラッグすると調整される視覚的指標をレイアウトビューに配置するほど簡単であるべきです。許容範囲の指標が3つのダイアログの奥深くに埋もれている理由はありません。 統合設計環境におけるルーティング許容範囲 差動ペアのルーティング、長さのトレース、ネットの定義、層間ルーティングは、通常、PCB設計の最も時間がかかる部分であるため、設計ソフトウェアには、信号ネットの長さ許容値を満たしながら、プロセス全体をスピードアップするインタラクティブ機能が含まれているべきです。これらのツールはソフトウェアパッケージに組み込まれているべきであり、この重要な機能がアドオンとしてのみ利用可能である理由はありません。 ソフトウェアがネット内の長さの不一致を通知することは一つのことですが、この不一致を修正することは別のことです。トレース長の不一致を修正するには、ネット内の短いトレースにミアンダーを配置して、最長のトレースの長さに合わせる必要があります。長さマッチング設定とミアンダーのジオメトリは、レイアウトから直接簡単にアクセスできるべきです。長さ調整のためのマイターを追加することは、不一致のトレースをマウスでドラッグするほど簡単であるべきです。 すべての接続をルーティングし、不一致のトレースをクリーンアップしたら、統合設計環境は、レイアウトを業界標準のシミュレーションおよび分析パッケージに統合します。誰もが、設計パッケージからシミュレーションプログラムにエクスポートする必要はありません。統合環境で作業することで、これらのツールにアクセスし、単一のプログラム内ですべての製造業者向けデリバラブルを生成できます。 Altium
記事を読む
PCB設計開発向けのプロジェクトテンプレートを使用する
1 min
Thought Leadership
生い茂った草木を切り払うために枝打ち斧を使ったことがある方なら、北アメリカの荒野を切り開いた遠い昔の開拓者たちの苦難がどれほどのものだったか想像がつくでしょう。その努力は、人間の精神の素晴らしい側面の表れでした。こうした先人の仲間に加わることはもはや不可能ですが、他のPCB設計者にとっての草分け的存在になる方法はあります。 プリント基板を設計する際に、作業を一からやり直さなくてはいけないことが多々あります。これから手掛けるモジュールや回路を以前に誰かが設計していたとしても、それらの図面を再利用できない場合、コンポーネントの選択、配線図の作成、基板のパラメーターの決定と設定、場合によってはスクリプトの記述とコードのデバッグで、基板レイアウトに時間を費やす必要があります。 これはリソースの浪費であり、回路基板、チーム、組織の生産性とコストの損失と同じです。基板設計CADのAltium Designer
®
を活用すると、チームをリードしながらこれらの損失を取り戻せます。ここでは、Altium DesignerのPCB設計開発向けのプロジェクトテンプレートを活用して、時間や資金といった貴重なリソースの浪費を最小限にする方法をご紹介します。 PCB設計向けのプロジェクトテンプレートにアクセスする プロジェクトテンプレートを使用可能にするには、プロジェクトテンプレートを作成しアクセス可能にする必要があります。Altium Designerでは、 プロジェクトテンプレートの作成は簡単で直接的です。テンプレートは元のコンポーネント、シート(サブ回路)、設計全体を対象に作成できます。プロジェクトテンプレートは設計ファイルと同様、どこにでも(例: ローカル、ネットワークサーバー)保存でき、直接アクセスできます(図1)。 直接アクセス サーバーからのアクセス 設計ファイルを実質的にどこにでも保存できどこからでもアクセスできるという柔軟性は確かに便利ですが、PCB設計のプロジェクトテンプレートにアクセスする場合、計画されたサーバーを利用することをおすすめします。サーバーは通常、セキュリティプロトコルと管理用の制御機能を備えています。これらは、データと情報へのアクセスを制限するのに必要です。また、サーバーは既知のディレクトリおよびファイル形式構造を提供することで統一性と一貫性を確保できます。サーバーソフトウェアは通常、サーバーが保管しているデータと情報の構造を乱さないでアップグレードできます。図2に示す Altium Concord Proは、PCB設計開発向けのプロジェクトテンプレートのホスティングに理想的なサーバーです。 サーバーのプロジェクトテンプレートは、メインウィンドウの右下の [Panels] タブで [Explorer]
記事を読む
IoT医療製品およびアプリケーション設計:課題と考慮事項
1 min
Thought Leadership
理想的には、あらゆる技術は人々に大きな影響を与え、人々が必要とするあらゆるタスクを達成する能力に影響を与えます。しかし、新しい技術が医療分野に導入されるとき、常にリスクは少し高くなります。どんな欠陥、エラー、または機能不全も直ちに誰かの健康に影響を与える可能性があることを認識する必要があります。確かに、すべての医療機器が生死に関わるわけではありませんが、それでも慎重に考慮されるべきです。 IoTの設計は常に挑戦ですが、医療IoTアプリケーションは追加の複雑さのレベルを持ち、追加の注意が必要です。コンポーネント選択プロセスをより厳格にするだけでなく、デザインはデバイスが重い摩耗やさまざまな環境条件にさらされることを考慮する必要があります。さらに、安全性と信頼性を最優先事項としなければなりません。どこから始めればよいでしょうか? デバイスとウェアラブルの種類 一般的に、医療IoTデバイスは、エンジニアリングの観点から、または医療の観点からの2つの視点で考えることができます。エンジニアリングの観点から見ると、医療IoTデバイスは大きく2つのカテゴリーに分かれます:埋め込み型センサーとモニター、またはウェアラブルです。 植込み型センサーとモニター: これらのデバイスは、エンジニアリングの観点から、材料、コンポーネント、および身体の動きによって影響を受ける信号の相互作用に特に注意を払って製造する必要があります。さらに、植込み型センサーやモニターを設計する場合、電源に関して計画を立てることが重要です。おそらく、バッテリーが切れた場合、デバイスに電力を供給するために何らかの侵襲的な処置が必要になるでしょう。 ウェアラブル: これらのデバイスは植込み型センサーやモニターと性質が似ていますが、植込み型デバイスよりも環境要求が異なります - 湿気への抵抗性とより大きな柔軟性が必要です。そして、一貫した電力供給が常に望ましいですが、ウェアラブルは植込み型デバイスよりも電力需要に適応しやすくなります。 医療の観点からこれらのデバイスは、その影響に基づいてより多く分類されます:生命管理に不可欠なデバイス、健康追跡と生命管理のための非重要デバイス、および健康またはフィットネストラッカー。 バイタルトラッキングとライフマネジメント:これらの電子機器は、 ペースメーカーや人工呼吸器などの追跡に使用されます。これらは、生命に不可欠な臓器やシステムに関する収集されたデータを送信する責任があります。これらのデバイスに対する注意は、重要な身体機能での役割に警戒すべきです。 非バイタルライフマネジメント:非バイタルライフマネジメントの分類は、これらのタイプのデバイスがそれほど重要ではないと指示する意図ではありませんが、本質的に、これらのデバイスが故障した場合に必要な対応の時間枠が著しく長くなることを診断します。これらのタイプのデバイスには、血圧計やグルコースモニターなどがあります。 健康またはフィットネストラッカー:その名の通り、健康またはフィットネストラッカーは、個人のフィットネスと健康を維持するために、歩数、食事、カロリー消費などのデータを追跡します。 デバイスの分類方法に関わらず、医療IoT電子機器は、患者と個人ケアのためのデータ管理の関係を大幅に変えることができます。 レイアウトとシステム要件 メディカルIoTには、患者が機器を通して経験する厳しいさまざまな環境に耐えることができる非常に頑丈なハードウェアが必要です。それはシャワー、スポーツイベント、または単に日常の座りがちな状態かもしれません。頑丈である一方で、ハードウェアは高品質の信号を収集し、環境ノイズを除去することによって信頼性の高いデータを提供するのに十分な感度も必要です。 さらに、収集された信号は信号処理も必要であり、これにはマイクロプロセッサが信頼性の高いパフォーマンスに必要なデータ処理を管理できる十分な速度と能力を持っていることが求められます。それはアナログ入力の解釈だけでなく、入力からの動作アーティファクトの除去など、より複雑なことを含むかもしれません。その後、そのプロセッサはウェアラブルアプリケーションに適したバッテリーで機能するために十分に低い電力要件を持っている必要があります。 フォームファクター
記事を読む
統合環境における制約駆動設計とルール駆動設計
1 min
Thought Leadership
競合他社のツールをご利用のユーザー
もし、人生のルールが自動的にチェックされたらどんなに素晴らしいだろうか。私はイタリア料理を作るのが好きだが、料理本とトマトソースの鍋の間を行き来するのは疲れる。キッチンでの唯一の自動ルールチェック機構はオーブンタイマーだ。幸いにも、PCBデザイナーにとっては、制約とルールのチェック機能を含む高品質のソフトウェアパッケージがあり、レイアウトと回路図を自動的にチェックできる。 ルーティング、スペーシング、伝搬遅延、ファンイン/ファンアウト、ビアに関する設計ルールをPCBに設定する能力は、PCB設計ソフトウェアの必須機能となっている。しかし、すべてのPCB設計ソフトウェアが同じように作られているわけではない。異なるプログラムでは設計ルールの定義が異なる方法で表示され、設計ルールは異なるインターフェースで定義され、いくつかの表示は他より直感的である。 PCB設計ソフトウェアは、設計ルールと制約を設定するだけでなく、これらのルールが回路図とレイアウトにどのように表示されるか、特定のアプリケーションに対してルーティング制約と指示をカスタマイズする柔軟性を提供すべきである。統合設計環境で作業するとき、設計ルールはプログラムの一部で定義され、レイアウト全体に適用される。 制約駆動型対ルール駆動型設計 制約ベースの設計とルール駆動型設計は、基本的な原則の下で動作します。定義された設計ルールに対してレイアウトをチェックし、設計者に違反を表示します。しかし、表面を掘り下げると、これらの方法論の間の主な違いは設計環境に関係しています。 制約駆動型設計を使用する一部のPCB設計ソフトウェア会社は、複数のプログラム間で制約定義を受け渡します。これが統合設計環境と呼ばれているにもかかわらず、設計はユーザーインターフェースの下で真に統合されていません。 真に統一された設計環境はこれを克服します。すべての制約定義とチェックが単一の統一インターフェースで行われます。回路図キャプチャプログラムからレイアウトプログラムに制約を送信する代わりに、回路図とレイアウトを一つの屋根の下で真に統合するソフトウェアを使用するのはどうでしょうか? 言われているように、ルールは破るためにあるものです。すべての設計ルールがすべての状況に適用されるわけではなく、設計ソフトウェアの仕事は、ルールを破ったときに通知することです。デザイナーやエンジニアとして、そのルールがデバイスが適切に機能するために本当に重要かどうかを決定するのはあなた次第です。レイアウト内のルール違反を明確で視覚的な方法で示すグラフィックをカスタマイズできるべきです。誰もルール違反のリストをスクロールして、モデル内の違反要素を手動で探したいとは思いません。 一部の設計ルールは他のルールよりも優先される必要があります。これを念頭に置いて、設計ソフトウェアはどの設計ルールをプロセスで優先するかを定義できるようにするべきです。これにより、優先順位の順にルールが順次チェックされます。このタイプのルールチェックは不必要なルールの衝突を防ぎ、統合設計モデルを使用するソフトウェアパッケージ内でのみ機能します。 Altium Designerのルールエディタ 制約と設計ルール:不足した場合はどうなるのか? 多層ボード、 HDIアプリケーション、高速設計、および 高周波設計において、ビアのパラメータと隣接する機能とのクリアランスを定義することは非常に重要です。これらの重要な構造に対する設計ルールを定義する際には、設計プロセスの各ステップでルールが設計にどのように影響するかを正確に表示するグラフィカルインターフェースを含めるべきです。 ビアとルーティングパラメータのグラフィカル表現を含まないソフトウェアは、設計者が抽象的な識別子に基づいてすべての設計ルールの意味を記憶することを強いるため、重要なルールを無視したり、誤って他のルールを適用したりする可能性があります。これはまた、新しい設計者が設計ソフトウェアに慣れるまでの時間を増加させます。 PCB設計ソフトウェアが、トレースクリアランスやビア設計のようなものにのみ設計ルールが適用されるという視点を取る場合、重要な機能に関する設計ルールを定義する機会を失います。信号整合性、高速設計、ルーティング指示、およびその他の仕様に関するルールは同様に重要であり、回路基板に同様の容量で影響を与えます。 あなたのソフトウェアにこれらの設計ルールが含まれていない場合、これらの重要な要件を満たしていることを確認する唯一の方法は、シミュレーションを含めるようにプロセスを調整することです。これらの領域の問題を修正することは時間がかかり、設計とシミュレーションの間を行き来する必要があります。設計とシミュレーションのソフトウェアが統合された設計環境に組み込まれていない場合、状況はさらに悪化します。 設計ルールはルーティングだけに関するものではありません 複雑なデバイスに取り組むとき、設計ルールは不可欠です。おそらく、制約エディタ、設計ルールチェック、
記事を読む
Altium Designerで回路図からPCBレイアウトを作成する方法
1 min
Blog
読者の皆さんにはいつものように、PCB回路図をまとめるという素晴らしい仕事をしていただきました。回路を定義したところで、PCBレイアウトに進む準備が整いました。しかし、今回は少し勝手が違います。通常のレイアウトリソースが利用できないか、最初のレイアウトを自分で作成したいと思うかもしれません。理由が何であれ、PCB設計の基板に関する作業を開始する準備はできていても、Altium DesignerのPCB回路図から作成する方法はご存じでないでしょう。 幸いなことに、Altium Designerの次のステップは非常に簡単です。ここでは、非常に単純なPCB回路図を見て、それを真新しいPCB設計と同期させるために何をする必要があるかを見ていきます。この単純で小さな設計は、おそらく現在取り組んでいる回路図とはまったく異なりますが、回路図から回路基板へのデータ転送の基本的な手順は同じです。PCB回路図からPCBレイアウトを作成することは難しくありません。Altium Designerは、回路図からPCBへのオールインワンの変換装置として機能します。 Altium Designerで回路図をPCBレイアウトに変換する方法 Altium Designerで回路図をPCBレイアウトに変換するプロセスでは、次の3つの簡単な手順に従います。 ステップ 1: 設計の同期を準備 ステップ 2: 回路図エディターを使用して設計データをPCBにインポート ステップ 3: レイヤースタックを定義 ステップ1では、回路図とPCBレイアウトの同期を妨げるような設計ルール違反がないか回路図をチェックします。PCBレイアウトが作成されると、この最初の同期ステップにより、回路図のその後の変更をPCBレイアウトにすぐにインポートできるようになります。ステップ2では、回路図エディターを使用して基板を空のPCBレイアウトにインポートします。現在のプロジェクトで新しいPCBファイルを作成し、回路図エディターを使ってコンポーネントのフットプリントを新しいPCBにインポートする必要があります。ステップ3では、新しいPCBのレイヤースタックを定義します。この3つの手順を完了したら、コンポーネントの配置とコンポーネント間のトレースの配線を開始できます。 Altium
記事を読む
高速PCB設計解析: シミュレーションとシグナルインテグリティ解析
1 min
Blog
夏の終わりが近づくと、私は家族を集め、魔法をかけられたようなワクワク感を求めてステートフェアに向かいます。フェアが開催される場所は、普段は人けがなく、荒れ果てた風景の中、小さなほこりのかたまりが風に吹き飛ばされていきます。ところがフェアが始まると、そこは活気に満ちあふれます。ゾウの耳がついたブース、動物や実演を見せる建物、大声で叫ぶ子供たちを乗せた娯楽用の乗り物などが並びます。それは、全ての部分が動く、ジャグリングのような曲芸的状況です。 高速信号に対応したPCBの組み立てには、設計、コンポーネント、高速信号を扱うジャグリングのような部分があります。これらの高速信号には、不要な伝送線路が回路基板に大混乱を引き起こす可能性があります。混乱の多くはPCBレイアウト自体で発生します。 レイアウトのどの部分がこのような混乱をもたらすかを把握しておくと、基板をレイアウトしながら問題を解決できます。適用したレイアウト手法がシグナルインテグリティにとって最適かどうかは、膨大な量の計算が必要な手間のかかる解析を行うか、シグナルインテグリティシミュレーションツールを使用することで明らかにできます。この記事をお読みいただいた後、ご自分の基板にとってどちらがより効果的かを判断してください。 不十分なシグナルインテグリティシミュレーションツール シグナルインテグリティシミュレーションツールが不十分だと、魔法はカオスと化します。インピーダンス計算機能は誤った計算結果を返します。計算は、レイヤのスタックアップやPCBデザインルールで定義された材料の誘電率と矛盾します。シミュレータはモデリングのリターンパスを前提とするので、GNDプレーンに不連続な部分があると、計算から除外されます。3Dフィールドソルバーは、完全に誤った差動ペアのインピーダンスを算出して返します。 ツールは単純で、デザインルールを考慮したPCBレイアウトのお決まりのオプションに対応していません。このツールには、リジッドフレキシブルのルールとシミュレーションが含まれています。そのシミュレーション環境では、波形が生成されますが、わかりにくいものになっています。さらに詳しく調べるには、複雑なコマンドを手動で実行して、普通の状態の値を求める必要があります。これは、3Dフィールドソルバーでも同様です。電気的に長いトレースの解析で一般的な選択項目がユーザーインターフェースに含まれていないので、自信を持って 高速シグナルインテグリティの回路基板をレイアウトすることができません。 インテリジェントなEDAツールによる知力の上手な活用 結果を解釈する時間の浪費 明らかなエラーを解析するためにシミュレーションツールの結果を調べると、何時間もかかります。メニューを使った移動は、慎重な操作が必要です。インピーダンス計算機能をあれこれ操作して、トレースのインピーダンスの計算に誤ったパラメーターが使用されたことを明らかにしようとして、無駄な時間がかかります。シミュレーションに使用されたパラメータが、PCBレイアウトのルールセットと一致しないことを発見しようとして、時間を取られます。誰がそんなことを予想したでしょうか? 面状材料の固有の電気容量と誘電率の正しいパラメータがないと、算出されたインピーダンスが高速信号の反射や リンギングを本当に抑えるかどうかを確信できません。 シミュレーションは、ドリルファイルの不足など、周囲のちょっとした異常により失敗します。シミュレーションのセットアップにさまざまなPCBエディタと設定が必要であることを考えると、ドリルファイルの不足によって生じる失敗は、セットアッププロセスに混乱をもたらします。エディタおよび設定メニューに与えられる、選択したパラメータを何度も尋ねることになります。 シグナルインテグリティの高速信号をシミュレーションするツールを分析していると、ヘルプページやアプリケーションノートの検索でより多くの時間を無駄に使います。最終的に、シミュレーションの結果を示す波形ができあがっても、不要なデータが表示されることが多々あります。手元に強力なツールがあっても、自分の回路基板について適切にガイドしてくれる使いやすいユーザインターフェースがなければイライラが募ります。最終的に整合性がどうなるかはわかりません。 整合性の問題を特定して解消する優れたツール PCBデザインルールで設定されている材料パラメータを、ツールのインピーダンス計算機能で使用できたら、すばらしいと思いませんか? インピーダンスを計算するため、デザインルール全体にツールポート情報が格納されていれば、回路設計に基づいて正しいコンポーネントとレイアウトが実装されたプリント回路基板が、製造業者から戻ってくることを確信できます。 シミュレーションに PCBのデザインルールのパラメータを使用すると、信頼できる結果になります。波形を表示して、回路設計とPCBレイアウトの両方のシミュレーション結果を示すことで、技術者とレイアウト設計者がシグナルインテグリティの問題と解決に対応しながら設計を作り込んでいくことができます。これにより、解析を実行し、手作業で得たベストプラクティスを適用し、PCBの製造を待ってシグナルインテグリティを検証するという推測に基づく作業がなくなります。 Altium
記事を読む
Pagination
First page
« First
Previous page
‹ Previous
ページ
29
現在のページ
30
ページ
31
ページ
32
ページ
33
ページ
34
Next page
Next ›
Last page
Last »